Morpho-Floral and Postharvest Responses of Iris kashmiriana to Ethyl Methanesulfonate (EMS) Mutagenesis

Morpho-Floral and Postharvest Responses of Iris kashmiriana to Ethyl Methanesulfonate (EMS) Mutagenesis

Authors

  • Muhammad Zeeshan M.Sc. (Hons) Scholar, Horticulture, PMAS Arid Agriculture University Rawalpindi, Pakistan
  • Usman Shoukat Qureshi Lecturer/Horticulturist (Landscape), Landscape Studio Lab, Horticulture, PMAS Arid Agriculture University Rawalpindi, Pakistan,
  • Muhammad Tahir Akram Assistant Professor, Horticulture, PMAS Arid Agriculture University, Rawalpindi, Pakistan
  • Rashid Mehmood Assistant Professor, Plant Breeding and Genetics, PMAS Arid Agriculture University, Rawalpindi, Pakistan
  • Saman Chughtai Ph.D., Horticulture, PMAS Arid Agriculture University, Rawalpindi, Pakistan
  • Hasnain Shamshad Research fellow, Landscape Studio Lab. Horticulture, PMAS Arid Agriculture University, Rawalpindi, Pakistan

Keywords:

Chemical concentration; , Vegetative variation; , Vase life; , Ethyl methanesulfonate (EMS); , Cut flower quality

Abstract

Iris kashmiriana, a hardy perennial flowering cut flower native to the northern region of Pakistan and a member of the Iridaceae family, which exhibits high floral, commercial and medicinal value. The present study aimed to induce phenotypic variation using ethyl methanesulfonate (EMS), a potent chemical mutagen known to cause point mutations in DNA. Five concentrations (control, 0.25 %, 0.5 %, 0.75 %, and 1.0 %) were applied with a dipping duration of 5 minutes. A range of morphological, floral and postharvest characteristics was evaluated to assess the mutagenic impact of EMS. Results show that EMS application of 0.5 % (T3), maximum improvement in multiple parameters including rhizome diameter (3.16 cm), leaf length (29.1 cm), number of leaves (8.4), plant height (32.8 cm), stalk length (28.26 cm), and flower count (2.26).T3 also showed delayed floral senescence (2.46 days), extended vase life (4.66 days), and quality score (7.5), indicating improved post-harvest longevity. EMS application of 0.25 % (T2) shows moderate results in parameters, rhizome diameter (2.66 cm), leaf length (26.4 cm), number of leaves (6.1), plant height (30.1 cm), stalk length (27.63 cm), and flower count (1.5). On the other hand, the highest concentration (T4) constantly resulted in decreased growth and floral traits, like reduced flower diameter (0.7 cm), petal area (3 cm²) and vase life (0.7 days). These findings recommend that the EMS application at 0.5 % is effective in enhancing desirable morphological, floral and post-harvest traits in Iris kashmiriana.

References

Abd EL-Moneim, E. A., Nassar, M. A., El-Said, R. A., & El-Refaee, Y. Z. (2021). Improvement of Salt Stress Tolerance in Strawberry by Ethyl Methane Sulfonate Treatment. Journal of Agricultural Chemistry and Biotechnology, 12(6), 117-126.

Agrawal, L., & Kumar, M. (2021). Improvement in ornamental, medicinal, and aromatic plants through induced mutation. Journal of Applied Biology and Biotechnology, 9(4), 162-169.

Ahmad, I., Saeed, H. A. U. R., & Khan, M. A. S. (2020). Ornamental horticulture: Economic importance, current scenario and prospects. In A. H. M. V. Araújo, & M. L. de Siqueira Pinto (Eds.), Etiology and integrated management of economically important fungal diseases of ornamental palms (pp. 3–40). Springer International Publishing.

Anderson, M. G., Hawes, N. L., Trantow, C. M., Chang, B., & John, S. W. (2008). Iris phenotypes and pigment dispersion are caused by genes influencing pigmentation. Pigment cell & melanoma research, 21(5), 565-578.

Bhajantri A., & Patil VS (2023). Studies on ethyl methane sulphonate (EMS) induced mutations for enhancing the variability of gladiolus varieties (Gladiolus hybridus Hort.) in M1V2 generation. Karnataka Journal of Agricultural Sciences, 26(3),403–407

Brock, M. T., & Weinig, C. (2007). Plasticity and environment-specific covariances: an investigation of floral–vegetative and within-flower correlations. Evolution, 61(12), 2913-2924.

Chalotra, R., Dhanawat, M., Maqbool, M., Lamba, N., Bibi, A., & Gupta, S. (2022). Phytochemistry and pharmacology of Iris kashmiriana. Pharmacognosy Research, 14(4), 350-355.

Chandni, Ahmad, S. S., Saloni, A., Bhagat, G., Ahmad, S., Kaur, S., ... & Abdi, G. (2024). Phytochemical characterization and biomedical potential of Iris kashmiriana flower extracts: a promising source of natural antioxidants and cytotoxic agents. Scientific Reports, 14(1), 24785.

Chen, L., Duan, L., Sun, M., Yang, Z., Li, H., Hu, K., ... & Liu, L. (2023). Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. Frontiers in Plant Science, 13, 1052569. https://doi.org/10.3389/fpls.2022.1052569.

Devrani, N., Kakkar, P., Sahu, A., & Tiwari, C. (2023). Global trends in floriculture. Floric Landscaping Chronicles A Revital Floric Sect Sri Lanka Collab Insights, 190-221.

Din, A., Qadri, Z. A., Wani, M. A., Banday, N., Iqbal, S., Nazki, I. T., & Wani, F. J. (2023). Enhancing flower colour diversity in chrysanthemum cv.“Candid” through ethyl methane sulfonate mutagenesis: A promising approach for ornamental crop improvement. ACS Agricultural Science & Technology, 3(11), 1004-1013.

Eisa, E. A., Honfi, P., & Kohut, I. (2025). Advancing Tuberose (Agave Amica Medik.) Thiede and Govaerts Cultivation: Insights into Characteristics, Cultivation Practices, and Breeding Strategies. In Breeding of Ornamental Crops: Bulbous Flowers (pp. 79-139). Cham: Springer Nature Switzerland.

Farooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2019). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. Institute of Electrical and Electronics Engineers Access, 7, 156237-156271.

Ghimire, A., & Fang, J. Y. (2023). Use of high concentrations of ethyl methanesulfonate to induce ϐlower mutation and improve ϐlowering in African violets. European Journal of Horticultural Science, 88(5), 1611-4426.

Ghormade, G. N., Tambe, T. B., Patil, U. H., & Nilima, G. (2020). Yield and quality of chrysanthemum varieties as influenced by chemical mutagens in VM1 generation. Journal Pharmacogn. and Phytochem, 9(4), 3100-3104.

Gul, F., I. Tahir and W. Shahri. (2013). Postharvest Dry Storage Treatments Enhance Vase Life of Cut Scapes of Nerine sarniensis cv. Red. In: Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 83(4), 505-511.

Gulzar, A., Ali, A., & Rana, R. M. (2024). Mutation breeding using chemical mutagen Ethyl Methane Sulphonate (EMS): An approach to morpho-physiological improvements in okra (Abelmoschus esculentus L.). Italus Hortus, 31(3), 55-70.

Guo, L., Lai, J., Lei, T., Liu, C., Li, J., Yang, L., & Gao, S. (2025). Ethyl methanesulfonate (EMS) mediated dwarfing mutation provides a basis for CaCO3 accumulation by enhancing photosynthetic performance in Ceratostigma willmottianum Stapf. Plant Biology, 27(1), 66-78.

Habib, S. H., Akanda, M. A. L., Roy, P., & Kausar, H. (2021). Effect of different dosages of EMS on germination, survivability and morpho-physiological characteristics of sunflower seedling. Helia, 44(75), 167-180.

Heffron, L. M., & Korban, S. S. (2022). Mutagenic responses to ethyl methanesulfonate and phenotypic characterization of an M1 generation of snapdragon, Antirrhinum majus. Euphytica, 218(6), 76.

Huang, W., Tao, C., Jiang, Q., Lu, L., Ke, L., & Yu, H. (2025). Genetic variation analysis of EMS-induced Curcuma alismatifolia Gagnep. Mutants using SSR markers. European Journal of Horticultural Science, 90(1), 0011.

Karpenko, V. P. (2015). Introduction, history of species and varieties of genus Iris L. in Ukraine against the background of global trends. Вестник Уманского национального университета садоводства, 9(2), 85-91.

Kaur, M., & Kumar, S. (2018). Effect of mutagen ethyl methane sulfonate on growth characters of tuberose (Polianthes tuberosa L.) cv. Prajwal. International Journal of Current Science, 6(4), 412-416.

Khatib, S., Faraloni, C., & Bouissane, L. (2022). Exploring the use of Iris species: antioxidant properties, phytochemistry, medicinal and industrial applications. Antioxidants, 11(3), 526.

Kumar, G., Pandey, S., Tiwari, N. K., Yadav, J., & Pandey, P. (2024). Cytological effects of EMS treatment on Salvia hispanica L.: Implications for mutation breeding programs. CYTOLOGIA, 89(4), 329-334.

Kumar, S. (2023). Studies on the influence of EMS mutagen on vegetative and floral attributes of Lilium (Lilium spp.) (Doctoral dissertation, HARYANA AGRICULTURAL UNIVERSITY HISAR).

Larraburu, E. E., Gonzalez, A. J., & Yarte, M. E. (2025). Advances in Prairie Gentian (Eustoma Grandiflorum (Raf.) Shinners) Breeding Research and Cultivation. In Breeding of Ornamental Crops: Annuals and Cut Flowers (pp. 509-531). Cham: Springer Nature Switzerland.

Lenawaty, D. Y., Sukma, D., Syukur, M., Suprapta, D. N., Nurcholis, W., & Aisyah, S. I. (2022). Increasing the diversity of marigold (Tagetes sp.) by acute and chronic chemical-induced mutation of EMS (Ethyl Methane Sulfonate). Biodiversitas Journal of Biological Diversity, 23(3) 1399-1407.

Liu, X., Feng, Z. M., Zhou, C. L., Ren, Y. K., Mou, C. L., Wu, T., ... & Wan, J. M. (2016). Brassinosteroid (BR) biosynthetic gene lhdd10 controls late heading and plant height in rice (Oryza sativa L.). Plant Cell Reports, 35(2), 357-368.

Macnish, A. J., Jiang, C. Z., & Reid, M. S. (2010). Treatment with thidiazuron improves opening and vase life of iris flowers. Postharvest biology and technology, 56(1), 77-84.

Madhuri, M. L., Reddy, M. L. N., Rao, A. D., Giridhar, K., & Krishna, K. U. (2017). Creation of variability for rhizome characters through physical and chemical mutagens in turmeric cv Prathibha. International Journal of Current Science, 5(4), 1147-1150.

Mehrabi, M. M., Taghizadeh, M., & Solgi, M. (2022). Effect of EMS Ethyl Methane Sulfonate (EMS) mutagen on Iranian rose (Rosa persica Michx) to generate morphological variation. Plant Productions, 45(3), 335-346.

Mir, A. H. (2014). Pharmacological and phytochemical properties of Iris kashmiriana Baker as a potential medicinal plant of the Kashmir Himalaya. Global Journal of Research on Medicinal Plants & Indigenous Medicine, 3(12), 460.

Monika, Y., Vinita, R., Saharan, R. S., & Sehrawat, S. K. (2016). Influence of gamma radiation and EMS on the morphological characteristics of gladiolus cv. PINK BEAUTY. Asian Journal of Horticulture, 11(1), 114-118.

More, S. (2024). Effect of chemical mutagen (Ethyl methane sulfonate) on Money plant (Epipremnum aureum). Journal of Applied and Natural Science, 16(1), 385.

Mykhailenko, O. O., Kovalev, V. M., Krechun, A. V., & Osolodchenko, T. P. (2017). Antimicrobial activity of extracts of Iris hungarica and Iris sibirica. Annals of Mechnikov Institute, 2, 57-64.

Purente, N., Chen, B., Liu, X., Zhou, Y., & He, M. (2020). Effect of ethyl methanesulfonate on induced morphological variation in M3 generation of Chrysanthemum indicum var. aromaticum. HortScience, 55(7), 1099-1104.

Puripunyavanich, V., Chanchula, N., Maikaeo, L., Limtiyayothin, M., Orpong, P., Tamman, A., & Piriyaphattarakit, A. (2023). Effects of Ethyl Methanesulfonate on Mutation Induction in Chrysanthemum spp. Trends in Sciences, 20(12), 6904-6904.

Rahman, K., & Akhtar, N. (2023). Plants profile of Sultan Khail Valley, Hindukush range of Pakistan: Floristic Composition, Biological Spectrum and Its Seasonal Variation.

Rodge, R. R., Rajan, R., Kaur, H., Khan, J., & Pandey, K. (2024). Standardization of EMS doses for mutagenesis in strawberry (Fragaria× ananassa Duch) cv. Winter dawn. Electronic Journal of Plant Breeding, 15(3), 752-757.

Shalini, S., Topno, S. E., & Prasad, V. M. (2023). Effect of different levels of EMS on chrysanthemum (Dendranthema grandiflora L.). International Journal of Plant & Soil Science, 35(18), 1949–1954.

Shinoyama, H., Mochizuki, A., Nomura, Y., Kamada, H., & Shibata, M. (2012). Genetic engineering of chrysanthemum (Chrysanthemum morifolium): Current progress and perspectives. Plant Biotechnology, 29(4), 323–337.

Shivaswamy, C., Patil, S., Sindha, M., & Jagga, S. (2025). Induction of variability in China aster [Callistephus chinensis (L.) Nees] by chemical mutagens. Journal of Ornamental Horticulture, 28(1), 56-63.

Sim, H.S., D.S. Kim, M.G. Ahn, S.R. Ahn and S.K. Kim. 2020. Prediction of strawberry growth and fruit yield based on environmental and growth data in a greenhouse for soil cultivation with applied autonomous facilities. Horticultural Science and Technology, 38(6), 840-849.

Singh, P. K., Sadhukhan, R., Dudhane, A. S., Kumar, V., & Sarkar, H. K. (2015). Preliminary study on mutagenic effect of EMS on tuberose (Polianthes tuberosa L.). Environment & Ecology, 33(3), 1386-1390.

Steel, R.G.D. (1997). Analysis of variance II: multiway classifications. Principles and procedures of statistics: A biometrical approach 204-252.

Suryawati, S., Kurniati, R., Yuniarto, K., Aisyah, S. I., Ramadhani, F., Sukmadjaja, D., ... & Syafrina, R. (2023). Morphological Diversity of Chrysanthemum (Dendranthema grandiflora Tzvelev) Genotypes induced by EMS (Ethyl methane sulfonate). In BIO Web of Conferences, 69, 1-8.

Tirkey, P., & Singh, D. (2019). Effect of physical and chemical induced mutation on different characteristics of gladiolus (Gladiolus grandiflorus L.). International Journal of Current Microbiology and Applied Sciences, 8(11), 1510-1516.

Tiwari, H., & Pandey, A. K. (2024). Effect of physical and chemical mutagens on morphological characters and vegetative abnormalities in commercial varieties of gladiolus (Gladiolus grandiflorus L.). Ecology, Environment & Conservation, 30(1), 123–129.

Wu, L., N. Ma, Y. Jia, Y. Zhang, M. Feng, C.Z. Jiang and J. Gao. 2017. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiology, 173(1), 853-862.

Yang, Y., Tan, Z., Liang, S., Cheng, W., Sun, Y., Cheng, Y., ... & Wang, Q. (2025). Genetic diversity analysis and comprehensive evaluation of “M82” in EMS-mutagenized tomato. Genes, 16(2), 179.

Yoosumran, V., Saetiew, K., Ruamrungsri, S., Akarapisarn, A., & Teerarak, M. (2025). Induced mutation of the curcuma hybrid cv. Sweet memory through tissue culture by ethyl methanesulphonate (EMS). International Journal of Agricultural Technology, 21(1), 381-396.

Zayed, M. Z., Ahmad, F. B., Zaki, M. A., Ho, W. S., & Pang, S. L. (2014). The reduction of mimosine content in Leucaena leucocephala (petai belalang) leaves using ethyl methanesulphonate (EMS). Archives of Applied Science Research, 64, 124-128.

Zhao, C., Wang, J., Mu, Y., Yao, W., Wang, H., & Shi, P. (2024). Testing the validity of the Montgomery–Koyama–Smith equation for calculating the total petal area per flower using two Rosaceae species. Plants, 13(24), 3499.

Downloads

Published

28-09-2025

How to Cite

Zeeshan, M., Qureshi, U. S., Akram, M. T. ., Mehmood, R., Chughtai, S. ., & Shamshad, H. . (2025). Morpho-Floral and Postharvest Responses of Iris kashmiriana to Ethyl Methanesulfonate (EMS) Mutagenesis . International Journal of Agriculture Innovations and Cutting-Edge Research (HEC Recognised), 3(3), 169–184. Retrieved from https://jai.bwo-researches.com/index.php/jwr/article/view/154
Loading...