The Enhancing Floral and Post-harvest Traits in Gladiolus through EMS-Induced Mutagenesis
Keywords:
Cut flower; , Ethyl methanesulfonate (EMS); , Mutagenesis; , Postharvest Longevity.Abstract
Gladiolus (Gladiolus grandiflora L.) cv. ‘White Prosperity’ is a commercially important cut flower, valued for its glossy white colored spikes and excellent vase life. Among cut flowers, it stands second in ranking after roses, but a narrow genetic base limits its breeding, which creates potential for improving its floral and postharvest characters. This study aimed to induce genetic variation by using different concentrations of chemical mutagen, Ethyl methanesulfonate (EMS) (control, @ 0.25%, @ 0.50%, @ 0.75% and @ 1.00%) for enhancing floral and postharvest attributes. Using a Randomized Complete Block Design (RCBD), significant variations were observed and recorded. The data showed that treatment T1 (0.25 %) showed the overall best results with the longest vase life (12.4 days), good stalk length (43.33 cm), number of florets (7.5), intermediate flower size with length of 5.37 cm and width of 53.56 mm. Also, maintained higher flower quality based on the rubric scoring method. EMS treatment T3 (0.75 %) showed moderate results by delaying senescence (3.79 days) while T4 (1.00 %) enhanced stalk length (43.40 cm) and also promoted earliest spike emergence (118.67 days). However, T3 and T4 negatively affected floret number, flower size and vase life. Overall, low concentration (0.25 %) emerged as most effective for improving both ornamental and postharvest longevity, making it a promising treatment for mutant selection and future gladiolus breeding. This study successfully demonstrates the potential of EMS mutagenesis for enhancing commercially important traits in gladiolus cultivation.
References
Ahmad, M., Iqbal, W., Ahmed, U., Jamal, A., Saeed, M. F., Elshikh, M. S., & Ronga, D. (2025). Enhancing floret persistence and bloom duration in gladiolus through foliar-applied calcium: a sustainable approach to floriculture. The Journal of Horticultural Science and Biotechnology, 14, 1-14.
Ahmed, S., Noor, A., & Bashir, M. (2024). Effects of mutagens on floret development in Gladiolus grandiflorus. Journal of Applied Botany, 98(2), 139–146.
Akram, A., Asghar, M. A., Younis, A., Ayyub, C. M., Ahmad, S., Akbar, A. F., & Mushtaq, M. Z. (2021). Effect of plant biostimulants on vase life of Gladiolus grandiflora L. cv." White Prosperity". Pakistan Journal of Life & Social Sciences, 19(2), 46-56.
Ali, Z., Qadeer, A., Ahmad, H. M., Aziz, O., Qasam, M., & Ali, Q. (2015). Assessment of the effect of different herbicides on morphological traits of Gladiolus grandiflorus. Life Science Journal, 12(4), 87-93.
Ali, Z., Shabbir, M., Qadeer, A., Ahmad, H. M., Qasim, M., & Aziz, O. (2016). Performance evaluation of gladiolus varieties under diverse climatic conditions. Plant Gene and Trait, 7(4), 1-9.
Baraiya, A., Patil, S., Mangroliya, R., Chawla, S., & Gujarati, N. (2022). Induction of variability in gladiolus (Gladiolus grandiflorus L.) by chemical mutagens, 28, 490-495.
Cantor, M., Pop, I., & Körösföy, S. (2002). Studies concerning the effect of gamma radiation and magnetic field exposure on gladiolus. Journal of Central European Agriculture, 3(4), 25-34.
Datta, S. K. (2014). Role of classical mutation breeding in crop improvement. Indian Journal of Genetics and Plant Breeding, 74(1), 10–16.
Dhiman, M., Thakur, N., Gupta, Y. C., & Sharma, N. (2022). Gladiolus in floriculture and ornamental plants. Springer, 47–79.
Din, A., Qadri, Z., Wani, M. A., Banday, N., Iqbal, S., Nazki, I. T., & Wani, F. J. (2023). Enhancing flower colour diversity in chrysanthemum cv.“Candid” through ethyl methane sulfonate mutagenesis: A promising approach for ornamental crop improvement. ACS Agricultural Science & Technology, 3(11), 1004-1013.
El-Nashar, Y., & Asrar, A. (2016). Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagens. Genet Mol Res, 15(2), 27173326.
Gul, R., & Shahid, M. (2024). Effect of chemical mutagens on flowering parameters of Zinnia elegans. International Journal of Agriculture Innovations and Cutting-Edge Research, 9(3), 98–105.
Gulzar, A., Ali, A., & Rana, R. M. (2024). Mutation breeding using chemical mutagen Ethyl Methane Sulphonate (EMS): An approach to morpho-physiological improvements in okra (Abelmoschus esculentus L.). Italus Hort, 31(3), 55-70.
Haider, N., & Javed, F. (2023). Enhancing the shelf life of floricultural crops using pre-harvest treatments. International Journal of Agriculture Innovations and Cutting-Edge Research, 8(2), 55–61.
Heffron, L. M., & Korban, S. S. (2023). Elucidating the ethylene response and tolerance in non-mutagenized and mutagenized snapdragon (Antirrhinum majus L.) lines using 1-aminocyclopropane-1-carboxylic acid (ACC). Plant Growth Regulation, 100(1), 133-145.
Jabeen, N., & Mirza, B. (2004). Ethyl methane sulfonate induces morphological mutations in Capsicum annuum. International Journal of Agriculture and Biology, 6(2), 340-345.
Jain, S. M., & Spencer, M. (2006). Biotechnology and mutagenesis in improving ornamental plants. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, 1, 589-600.
Javaid, A., Pandey, R. K., Shah, A. H., Bakshi, P., Nazki, I. T., Kaushal, N., & Singh, A. K. (2025). Response of Gladiolus grandiflorus varieties to planting date: effects on growth, flowering, and vase life. BMC Plant Biology, 25(1), 481.
Jyothsna, B., Dey, S., Venkataramanan, S., Hallur, R. L., & Srivastava, D. (2024). Molecular, morphological, and biomolecular characterization of ethyl methanesulfonate-induced mutations in Aerides odoratum, an orchid. Journal of Applied Biology & Biotechnology, 12(4), 136-143.
Kashyap, M., & Saha, M. (2023). A review on the effect of induced mutation on various morphological and flowering characters of gladiolus (Gladiolus grandiflorus L.). The Pharma Innovation Journal, 12(7), 386-389.
Kazemzadeh-Beneh, H., Samsampour, D., & Zarbakhsh, S. (2018). Biochemical, physiological changes and antioxidant responses of the cut gladiolus flower ‘White Prosperity’induced by nitric oxide. Advances in Horticultural Science, 32(3), 421-432.
Khan, M. A., Farid, A., & Rauf, M. (2023). Induced mutagenesis and mutation breeding in floriculture: A review. Plant Breeding Reviews, 47, 211–236.
Kim, J., Park, H. Y., & Kim, H. J. (2022). Role of EMS in mutation breeding of bulbous plants: A global review. Journal of Horticultural Science, 99(3), 453–468.
Kole, P. C., & Meher, S. K. (2005). Effect of gamma rays on some quantitative and qualitative characters in Zinnia ginnia Elegans NJ Jacguin in M1 generation. Journal of Ornamental Horticulture, 8(4), 303-305.
Kumar, A., Kumar, A., & Kumar, A. (2019). Genetic variability, heritability, genetic advance and genetic divergence for yield and its contributing traits in gladiolus (Gladiolus grandiflorus L.). International Journal of Current Microbiology and Applied Sciences, 8(1), 689-701.
Kumar, S. (2023). Studies on the influence of EMS mutagen on vegetative and floral attributes of Lilium (Lilium spp.). Haryana Agricultural University, Hisar.
Kumari, K., & Kumar, S. (2015). Effect of gamma irradiation on vegetative and propagule characters in gladiolus and induction of homeotic mutants. International Journal of Agriculture, Environment and Biotechnology, 8(2), 413.
Kumari, P., Thakur, N., & Kumari, G. (2025). Gladiolus (Gladiolus spp.): Insight into conservation, agrotechniques, breeding methodology and prospects. Breeding of Ornamental Crops: Bulbous Flowers. Springer, 5, 381-418.
Lenawaty, D. Y., Sukma, D., Syukur, M., Suprapta, D. N., Nurcholis, W., & Aisyah, S. I. (2022). Increasing the diversity of marigold (Tagetes sp.) by acute and chronic chemical-induced mutation of EMS (Ethyl Methane Sulfonate). Biodiversitas Journal of Biological Diversity, 23(3), 1399-1407.
Mehrabi, M. M., Taghizadeh, M., & Solgi, M. (2022). Effect of EMS Ethyl Methane Sulfonate (EMS) mutagen on Iranian rose (Rosa persica Michx) to generate morphological variation. Plant Productions, 45(3), 335-346.
Moustafa, S., Agina, E., Ghatas, Y., & El-Gazzar, Y. (2018). Effect of gamma rays, microwave and colchicine on some morphological and cytological characteristics of Gladiolus grandiflorus cv. White Prosperity. Middle East Journal of Agricultural Research, 7(4), 1827-1839.
Nasri, F., Zakizadeh, H., Vafaee, Y., & Mozafari, A. A. (2022). In vitro mutagenesis of Chrysanthemum morifolium cultivars using ethylmethanesulphonate (EMS) and mutation assessment by ISSR and IRAP markers. Plant Cell, Tissue and Organ Culture (PCTOC), 149(3), 657-673.
Patil, M., Bharathi, T. U., Usharani, T., Rohini, M., Kumar, R., Kulkarni, B. S., & MC, K. (2025). In vitro regeneration and optimization of physical and chemical mutagenesis protocol in tuberose (Agave amica (Medik.) Thiede & Govaerts) cv.‘Arka Vaibhav. International Journal of Radiation Biology, 101(4), 398-410.
Pooja, K. (2016). Effect of physical and chemical mutagens on different cultivars of tuberose (Polianthes tuberosa Linn.) with particular reference to induction of genetic variability. International Journal of Agriculture Sciences, 8(15), 1257-1260.
Popatanasov, A., Timina, O., & Tomlekova, N. (2023). Mutation breeding research in Sweet pepper. Mutation Breeding for Sustainable Food Production and Climate Resilience, 599-644.
Puripunyavanich, V., Chanchula, N., Maikaeo, L., Limtiyayothin, M., Orpong, P., Tamman, A., & Piriyaphattarakit, A. (2023). Effects of ethyl methanesulfonate on mutation induction in Chrysanthemum spp. Trends in Sciences, 20(12), 6904-6904.
Qureshi, U. S., Hassan, I., Khan, M. A., & Jilani, G. (2025). Evaluating phenotypic and genetic diversity of Iris germplasm for sustainable cut flower production. Pakistan Journal of Agricultural Sciences, 62(1).
Siddique, M. I., Back, S., Lee, J. H., Jo, J., Jang, S., Han, K., & Kang, B. C. (2020). Development and characterization of an ethyl methane sulfonate (EMS) induced mutant population in Capsicum annuum L. Plants, 9(3), 396.
Silva, A. R., & Costa, M. (2023). Postharvest physiology in EMS-mutated gladiolus under different storage environments. Postharvest Biology and Technology, 196, 112274.
Singh, N. (2008). Biochemical characterization of flower senescence in Gladiolus. IARI, Division of Floriculture and Landscaping, New Delhi.
Subramaniam, R., & Kumar, V. S. (2023). Ethyl methanesulphonate (EMS)-mediated mutagenesis induces genetic and morphological variations in eggplant (Solanum melongena L.). International Journal of Plant Biology, 14(3), 714-728.
Tirkey, P., & Singh, D. (2019). Effect of induced mutagenesis on different characters of gladiolus (Gladiolus grandifloras L.) J. Pharmacognosy Phytochem, 8(6), 650-654.
Usman, M., Ashfaq, M., Naqvi, S. A. A., Al, A., Javed, M. I., Nadeem, N., Raza, M. H., & Waseem, M. (2015). An efficiency analysis of gladiolus cut flowers in Punjab, Pakistan. Agricultural Sciences, 6(7), 663–669.
Yousaf, H., & Riaz, U. (2025). Floral trait modification in cut flower crops through mutagenesis. International Journal of Agriculture Innovations and Cutting-Edge Research, 10(1), 22–29.
Zhang, X., Li, H., Wang, J., & Yang, Y. (2024). EMS-induced flower trait variation in ornamental bulbs. Scientia Horticulturae, 317, 112385.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Agriculture Innovations and Cutting-Edge Research (HEC Recognised)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
BWO Research International
15162394 Canada Inc.,
Kitchener, ON, N2G2B3,
Canada