Integrating Pan-Genomics, CRISPR-Cas9, and Predictive Modelling for Next-Generation Alfalfa Cultivar Development

Integrating Pan-Genomics, CRISPR-Cas9, and Predictive Modelling for Next-Generation Alfalfa Cultivar Development

Authors

  • Muhammad Abu Bakar Ghalib Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • Ayesha khawar Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • Kashaf Ul Nissa Bilal Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • Muhammad Ahmed Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • Muhammad Shoaib Shabbir Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan

Keywords:

CRISPR/CAS, , Multi-omics, , Proteomics, , Marker-assisted breeding, , Genome-wide association sequencing

Abstract

Alfalfa (Medicago sativa L.) is a perennial forage legume, renowned for its wider adaptability and environmental benefits. However, conventional breeding is stagnant and less adaptive because of its autotetraploid genetic complexity. This paper highlights the significant impact of contemporary breeding technologies on accelerating alfalfa breeding. Also focuses on integrating modern breeding technology with the latest biotechnological innovations to ensure the successful improvement of alfalfa. Additionally, genomic data facilitate the identification of genetic loci associated with important agronomic traits, including biomass yield, fodder quality, and abiotic stress tolerance, through marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection (GS). Additionally, we investigate the use of genome editing, specifically CRISPR/Cas9, for targeted genetic enhancement. Combining multi-omics methodologies. Crucially, we stress the importance of integrating GWAS, high-throughput technologies, and machine learning (ML) and artificial intelligence (AI) algorithms to optimize outputs. This paper promotes an innovative, integrated approach to alfalfa breeding that combines predictive modelling, CRISPR-Cas9, and pan-genomics. This pipeline is essential for speeding the development of improved alfalfa to satisfy future agricultural demands by going beyond incremental increases to a systems-level strategy.

References

Alqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. Journal of Advanced Research, 22, 119–135. https://doi.org/10.1016/J.JARE.2019.10.013

Alseekh, S., Kostova, D., Bulut, M., & Fernie, A. R. (2021). Genome-wide association studies: assessing trait characteristics in model and crop plants. In Cellular and Molecular Life Sciences (Vol. 78, Issue 15, pp. 5743–5754). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00018-021-03868-w

Biazzi, E., Nazzicari, N., Pecetti, L., Brummer, E. C., Palmonari, A., Tava, A., & Annicchiarico, P. (2017). Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits. PLOS ONE, 12(1), e0169234-. https://doi.org/10.1371/journal.pone.0169234

Cazenave, A. B., Shah, K., Trammell, T., Komp, M., Hoffman, J., Motes, C. M., & Monteros, M. J. (2019). High-Throughput Approaches for Phenotyping Alfalfa Germplasm under Abiotic Stress in the Field. Plant Phenome Journal, 2(1), 1–13. https://doi.org/10.2135/tppj2019.03.0005

Cheng, T., Zhang, D., Zhang, G., Wang, T., Ren, W., Yuan, F., Liu, Y., Wang, Z., & Zhao, C. (2025). High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges. Artificial Intelligence in Agriculture, 15(1), 98–115. https://doi.org/https://doi.org/10.1016/j.aiia.2025.01.003

Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., Wang, J., Hughes, T. J., Willis, D. K., Clemente, T. E., Diers, B. W., Jiang, J., Hudson, M. E., & Bent, A. F. (2012). Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 338(6111), 1206–1209. https://doi.org/10.1126/science.1228746

Della Coletta, R., Qiu, Y., Ou, S., Hufford, M. B., & Hirsch, C. N. (2021). How the pan-genome is changing crop genomics and improvement. Genome Biology, 22(1), 3. https://doi.org/10.1186/s13059-020-02224-8

Desgagnes, R., Allard, G., Khoudi, H., Castonguay, Y., Lapointe, J., Michaud, R., & Vézina, L.-P. (1995). Genetic transformation of commercial breeding lines of alfalfa (Medicago sativa). Plant Cell Tissue and Organ Culture, 42, 129–140. https://doi.org/10.1007/BF00034229

Fernandez, A. L., Fabrizzi, K. P., Tautges, N. E., Lamb, J. A., & Sheaffer, C. C. (2019). Cutting management and alfalfa stand age effects on organically grown corn grain yield and soil N availability. Renewable Agriculture and Food Systems, 34(2), 144–154. https://doi.org/DOI: 10.1017/S1742170517000394

Furbank, R. T., & Tester, M. (2011). Phenomics – technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16(12), 635–644. https://doi.org/10.1016/j.tplants.2011.09.005

Gabur, I., Chawla, H. S., Snowdon, R. J., & Parkin, I. A. P. (2019). Connecting genome structural variation with complex traits in crop plants. Theoretical and Applied Genetics, 132(3), 733–750. https://doi.org/10.1007/s00122-018-3233-0

Grinberg, N., Lovatt, A., Hegarty, M., Lovatt, A., Skøt, K., Kelly, R., Blackmore, T., Thorogood, D., King, R., Armstead, I., Powell, W., & Skøt, L. (2016). Implementation of Genomic Prediction in Lolium perenne (L.) Breeding Populations. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00133

Hawkins, C., & Yu, L. X. (2018). Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. The Crop Journal, 6(6), 565–575. https://doi.org/10.1016/J.CJ.2018.01.006

He, F., Xu, M., Long, R., Zhu, K., Du, M., Ma, W., Xue, H., Peng, Y., Chen, L., Kang, J., Zhou, Y., Yang, Q., & Zhang, F. (2025). Integrative multi-omics and genomic prediction reveal the genetic basis of early salt tolerance in alfalfa. Journal of Genetics and Genomics. https://doi.org/https://doi.org/10.1016/j.jgg.2025.09.001

He, F., Zhang, F., Jiang, X., Long, R., Wang, Z., Chen, Y., Li, M., Gao, T., Yang, T., Wang, C., Kang, J., Chen, L., & Yang, Q. (2022). A Genome-Wide Association Study Coupled With a Transcriptomic Analysis Reveals the Genetic Loci and Candidate Genes Governing the Flowering Time in Alfalfa (Medicago sativa L.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.913947

Heiba, S. A. A., Tawfick, R., Abdel-Rahman, H., & Rashad, S. (2023). Detected molecular markers for Alfalfa (Medicago sativa) using ISSR and SSR under Egyptian conditions. XI, 2278–2540.

Hrbáčková, M., Dvořák, P., Takáč, T., Tichá, M., Luptovčiak, I., Šamajová, O., Ovečka, M., & Šamaj, J. (2020). Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. In Frontiers in Plant Science (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.00592

James, D., Rennya, P. R., Mallavarapu, M. D., Panigrahi, R. C., & Patel, H. K. (2021). Integrating Pan-Omics Data in a Systems Approach for Crop Improvement: Opportunities and Challenges. In A. Kumar, R. Kumar, P. Shukla, & H. K. Patel (Eds.), Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II) (pp. 215–246). Springer Singapore. https://doi.org/10.1007/978-981-16-2956-3_8

Jannink, J. L., Lorenz, A. J., & Iwata, H. (2010). Genomic selection in plant breeding: From theory to practice. Briefings in Functional Genomics and Proteomics, 9(2), 166–177. https://doi.org/10.1093/BFGP/ELQ001

Jia, C., Wu, X., Chen, M., Wang, Y., Liu, X., Gong, P., Xu, Q., Wang, X., Gao, H., & Wang, Z. (2017). Identification of genetic loci associated with crude protein and mineral concentrations in alfalfa (Medicago sativa) using association mapping. BMC Plant Biology, 17(1), 97. https://doi.org/10.1186/s12870-017-1047-x

Jiang, X., Yu, A., Zhang, F., Yang, T., Wang, C., Gao, T., Yang, Q., Yu, L. X., Wang, Z., & Kang, J. (2022). Identification of QTL and candidate genes associated with biomass yield and Feed Quality in response to water deficit in alfalfa (Medicago sativa L.) using linkage mapping and RNA-Seq. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.996672

JIANG, X., ZHANG, F., WANG, Z., LONG, R., LI, M., HE, F., YANG, X., YANG, C., JIANG, X., YANG, Q., WANG, Q., & KANG, J. (2022). Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.). Journal of Integrative Agriculture, 21(3), 812–818. https://doi.org/https://doi.org/10.1016/S2095-3119(21)63671-7

Jing, Q., Qian, B., Bélanger, G., VanderZaag, A., Jégo, G., Smith, W., Grant, B., Shang, J., Liu, J., He, W., Boote, K., & Hoogenboom, G. (2020). Simulating alfalfa regrowth and biomass in eastern Canada using the CSM-CROPGRO-perennial forage model. European Journal of Agronomy, 113, 125971. https://doi.org/https://doi.org/10.1016/j.eja.2019.125971

Kaur, H., Shannon, L. M., & Samac, D. A. (2024). A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. In BMC Genomics (Vol. 25, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12864-024-10931-w

Kumar, S. (2011). Biotechnological advancements in alfalfa improvement. In Journal of Applied Genetics (Vol. 52, Issue 2, pp. 111–124). https://doi.org/10.1007/s13353-011-0028-2

Li, Z., He, F., Tong, Z., Li, X., Yang, Q., & Hannaway, D. B. (2022). Metabolomic changes in the crown of alfalfa (Medicago sativa L.) during de-acclimation. Scientific Reports, 12(1), 14977. https://doi.org/10.1038/s41598-022-19388-x

Lin, S., Medina, C. A., Boge, B., Hu, J., Fransen, S., Norberg, S., & Yu, L.-X. (2020). Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biology, 20(1), 303. https://doi.org/10.1186/s12870-020-02520-2

Lin, Z., Li, X., Shannon, L. M., Yeh, C.-T., Wang, M. L., Bai, G., Peng, Z., Li, J., Trick, H. N., Clemente, T. E., Doebley, J., Schnable, P. S., Tuinstra, M. R., Tesso, T. T., White, F., & Yu, J. (2012). Parallel domestication of the Shattering1 genes in cereals. Nature Genetics, 44(6), 720–724. https://doi.org/10.1038/ng.2281

Malik, M., Moaeen-ud-Din, M., Bilal, G., Kaukab, G., Saeed, S., Asad, M., Wattoo, F., & Muner, R. (2022). THE USE OF AFLP-PCR MARKERS TO DISCRIMINATE BETWEEN RED SINDHI AND CROSSBRED DAIRY CATTLE OF PAKISTAN. The Journal of Animal and Plant Sciences, 32, 2022. https://doi.org/10.36899/JAPS.2022.1.0396

Meng, Y., Hou, Y., Wang, H., Ji, R., Liu, B., Wen, J., Niu, L., & Lin, H. (2017). Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports, 36(2), 371–374. https://doi.org/10.1007/s00299-016-2069-9

Nitcher, R., Distelfeld, A., Tan, C., Yan, L., & Dubcovsky, J. (2013). Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Molecular Genetics and Genomics, 288(5), 261–275. https://doi.org/10.1007/s00438-013-0746-8

Omar, N. Z., Aizam, N., & Setumin, S. (2025). A COMPARATIVE ANALYSIS OF MACHINE LEARNING MODELS FOR PREDICTING AGRICULTURAL OUTCOMES USING SOIL AND CLIMATE DATA. https://doi.org/10.13140/RG.2.2.16144.52481

Petolescu, C., Sarac, I., Popescu, S., Tenche-Constantinescu, A. M., Petrescu, I., Camen, D., Turc, A., Fora, G. C., Turcus, V., Horablaga, N. M., Gorinoiu, G., Mariana, G., & Onisan, E. (2024). Assessment of Genetic Diversity in Alfalfa Using DNA Polymorphism Analysis and Statistical Tools. Plants, 13(20). https://doi.org/10.3390/plants13202853

Postnikova, O. A., Shao, J., & Nemchinov, L. G. (2013). Analysis of the Alfalfa Root Transcriptome in Response to Salinity Stress. Plant and Cell Physiology, 54(7), 1041–1055. https://doi.org/10.1093/pcp/pct056

Qiang, H., Chen, Z., Zhang, Z., Wang, X., Gao, H., & Wang, Z. (2015). Molecular Diversity and Population Structure of a Worldwide Collection of Cultivated Tetraploid Alfalfa (Medicago sativa subsp. sativa L.) Germplasm as Revealed by Microsatellite Markers. PLOS ONE, 10(4), e0124592-. https://doi.org/10.1371/journal.pone.0124592

Rojas, R. (2013). Neural networks: a systematic introduction.

Russell, Norvig, S. J. , & Peter. (2016). Artificial intelligence : a modern approach. https://thuvienso.hoasen.edu.vn/handle/123456789/8967

Sánchez, G., Frausto Solís, A., & Ojeda Bustamante, J. (2014). Predictive ability of machine learning methods for massive crop yield prediction. In the Fuente Spanish Journal of Agricultural Research (Issue 2). http://hdl.handle.net/20.500.12013/1927

Sayed, M. A., Maurer, A., Schmutzer, T., Schnurbusch, T., Börner, A., Hansson, M., Pillen, K., & Youssef, H. M. (2022). Genome-Wide Association Study of Salt Tolerance-Related Traits during Germination and Seedling Development in an Intermedium-Spike Barley Collection. International Journal of Molecular Sciences, 23(19). https://doi.org/10.3390/ijms231911060

Scheben, A., Batley, J., & Edwards, D. (2017). Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. In Plant Biotechnology Journal (Vol. 15, Issue 2, pp. 149–161). Blackwell Publishing Ltd. https://doi.org/10.1111/pbi.12645

Shi, S., Nan, L., & Smith, K. F. (2017a). The current status, problems, and prospects of alfalfa (Medicago Sativa L.) breeding in China. In Agronomy (Vol. 7, Issue 1). MDPI AG. https://doi.org/10.3390/agronomy7010001

Shi, S., Nan, L., & Smith, K. F. (2017b). The current status, problems, and prospects of alfalfa (Medicago Sativa L.) breeding in China. In Agronomy (Vol. 7, Issue 1). MDPI AG. https://doi.org/10.3390/agronomy7010001

Shi, S., Nan, L., & Smith, K. F. (2017c). The current status, problems, and prospects of alfalfa (Medicago Sativa L.) breeding in China. In Agronomy (Vol. 7, Issue 1). MDPI AG. https://doi.org/10.3390/agronomy7010001

Solozhentseva, L., Piskovatsky, Y., & Lomov, M. (2021). Alfalfa breeding to increase productivity, disease resistance. IOP Conference Series: Earth and Environmental Science, 901, 012012. https://doi.org/10.1088/1755-1315/901/1/012012

Sutton, T., Baumann, U., Hayes, J., Collins, N. C., Shi, B. J., Schnurbusch, T., Hay, A., Mayo, G., Pallotta, M., Tester, M., & Langridge, P. (2007). Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science, 318(5855), 1446–1449. https://doi.org/10.1126/science.1146853

Suwignyo, B., Aristia Rini, E., & Helmiyati, S. (2023). The profile of tropical alfalfa in Indonesia: A review. Saudi Journal of Biological Sciences, 30(1), 103504. https://doi.org/https://doi.org/10.1016/j.sjbs.2022.103504

Tan, L., Li, X., Liu, F., Sun, X., Li, C., Zhu, Z., Fu, Y., Cai, H., Wang, X., Xie, D., & Sun, C. (2008). Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 40(11), 1360–1364. https://doi.org/10.1038/ng.197

Tattaris, M., Reynolds, M. P., & Chapman, S. C. (2016). A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Frontiers in Plant Science, 7(AUG2016). https://doi.org/10.3389/fpls.2016.01131

Tlahig, S., Mohamed, A., Triki, T., Yahia, Y., Yehmed, J., Yahia, H., Guasmi, F., & Loumerem, M. (2025). Integrated agro-morphological and molecular characterization for progeny testing to enhance alfalfa breeding in arid regions of Tunisia. Journal of Agriculture and Food Research, 20, 101793. https://doi.org/https://doi.org/10.1016/j.jafr.2025.101793

Tu, X., Liu, Z., & Zhang, Z. (2018). Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars (Medicago sativa L.) after thrips infestation. BMC Genomics, 19(1), 116. https://doi.org/10.1186/s12864-018-4495-2

Wang, K., Nan, L. L., Xia, J., Yao, Y. H., Cheng, J., & Chen, J. R. (2024). Transcriptome analysis reveals candidate genes for different root types of alfalfa (Medicago sativa) after water stress induced by PEG-6000. Chemical and Biological Technologies in Agriculture, 11(1). https://doi.org/10.1186/s40538-024-00640-7

Wang, Z., Qiang, H., Zhao, H., Xu, R., Zhang, Z., Gao, H., Wang, X., Liu, G., & Zhang, Y. (2016). Association mapping for fibre-related traits and digestibility in alfalfa (Medicago sativa). Frontiers in Plant Science, 7(MAR2016). https://doi.org/10.3389/fpls.2016.00331

Wang, Z., Wang, X., Zhang, H., Ma, L., Zhao, H., Jones, C. S., Chen, J., & Liu, G. (2020). A genome-wide association study approach to the identification of candidate genes underlying agronomic traits in alfalfa (Medicago sativa L.). Plant Biotechnology Journal, 18(3), 611–613. https://doi.org/10.1111/pbi.13251

White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., Feldmann, K. A., French, A. N., Heun, J. T., Hunsaker, D. J., Jenks, M. A., Kimball, B. A., Roth, R. L., Strand, R. J., Thorp, K. R., Wall, G. W., & Wang, G. (2012). Field-based phenomics for plant genetics research. Field Crops Research, 133, 101–112. https://doi.org/https://doi.org/10.1016/j.fcr.2012.04.003

Whitmire, C. D., Vance, J. M., Rasheed, H. K., Missaoui, A., Rasheed, K. M., & Maier, F. W. (2021a). Using Machine Learning and Feature Selection for Alfalfa Yield Prediction. AI (Switzerland), 2(1), 71–88. https://doi.org/10.3390/ai2010006

Whitmire, C. D., Vance, J. M., Rasheed, H. K., Missaoui, A., Rasheed, K. M., & Maier, F. W. (2021b). Using Machine Learning and Feature Selection for Alfalfa Yield Prediction. AI (Switzerland), 2(1), 71–88. https://doi.org/10.3390/ai2010006

Whitmire, C. D., Vance, J. M., Rasheed, H. K., Missaoui, A., Rasheed, K. M., & Maier, F. W. (2021c). Using Machine Learning and Feature Selection for Alfalfa Yield Prediction. AI (Switzerland), 2(1), 71–88. https://doi.org/10.3390/ai2010006

Wolabu, T. W., Cong, L., Park, J. J., Bao, Q., Chen, M., Sun, J., Xu, B., Ge, Y., Chai, M., Liu, Z., & Wang, Z. Y. (2020). Development of a Highly Efficient Multiplex Genome Editing System in Outcrossing Tetraploid Alfalfa (Medicago sativa). Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01063

Würschum, T., Boeven, P. H. G., Langer, S. M., Longin, C. F. H., & Leiser, W. L. (2015). Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genetics, 16(1), 96. https://doi.org/10.1186/s12863-015-0258-0

Yang, Y., Saand, M. A., Huang, L., Abdelaal, W. B., Zhang, J., Wu, Y., Li, J., Sirohi, M. H., & Wang, F. (2021). Applications of Multi-Omics Technologies for Crop Improvement. In Frontiers in Plant Science (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fpls.2021.563953

Young, N. D., Cannon, S. B., Sato, S., Kim, D., Cook, D. R., Town, C. D., Roe, B. A., & Tabata, S. (2005). Sequencing the Genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology, 137(4), 1174–1181. https://doi.org/10.1104/pp.104.057034

Young, N. D., Debellé, F., Oldroyd, G. E. D., Geurts, R., Cannon, S. B., Udvardi, M. K., Benedito, V. A., Mayer, K. F. X., Gouzy, J., Schoof, H., Van de Peer, Y., Proost, S., Cook, D. R., Meyers, B. C., Spannagl, M., Cheung, F., De Mita, S., Krishnakumar, V., Gundlach, H., … Roe, B. A. (2011). The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480(7378), 520–524. https://doi.org/10.1038/nature10625

Young, N. D., & Udvardi, M. (2009). Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology, 12(2), 193–201. https://doi.org/10.1016/J.PBI.2008.11.005

Yu, L. X., Liu, X., Boge, W., & Liu, X. P. (2016). Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00956

Yu, L. X., Zhang, F., Culma, C. M., Lin, S., Niu, Y., Zhang, T., Yang, Q., Smith, M., & Hu, J. (2020). Construction of high-density linkage maps and identification of quantitative trait loci associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Plant Disease, 104(5), 1439–1444. https://doi.org/10.1094/PDIS-08-19-1718-RE

Zhang, F., Kang, J., Long, R., Yu, L. X., Sun, Y., Wang, Z., Zhao, Z., Zhang, T., & Yang, Q. (2020). Construction of a high-density genetic linkage map and mapping quantitative trait loci (QTL) for flowering time in autotetraploid alfalfa (Medicago sativa L.) using genotyping by sequencing. Plant Genome, 13(3). https://doi.org/10.1002/tpg2.20045

Zhang, T., Yu, L.-X., Zheng, P., Li, Y., Rivera, M., Main, D., & Greene, S. L. (2015). Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing. PLOS ONE, 10(9), e0138931-. https://doi.org/10.1371/journal.pone.0138931

Zhang, T., Yu, L.-X., Zheng, P., Li, Y., Rivera, M., Main, D., & Greene, S. L. (2015b). Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing. PLOS ONE, 10(9), e0138931-. https://doi.org/10.1371/journal.pone.0138931

Zhang, Y., & Wang, L. (2025a). Advances in basic biology of alfalfa (Medicago sativa L.): a comprehensive overview. In Horticulture Research (Vol. 12, Issue 7). Oxford University Press. https://doi.org/10.1093/hr/uhaf081

Zhang, Y., & Wang, L. (2025b). Advances in basic biology of alfalfa (Medicago sativa L.): a comprehensive overview. Horticulture Research, 12(7), uhaf081. https://doi.org/10.1093/hr/uhaf081

Zheng, L., Wen, J., Liu, J., Meng, X., Liu, P., Cao, N., Dong, J., & Wang, T. (2022). Fro m model to alfalfa: Gene editing to obtain semidwarf and prostrate growth habits. The Crop Journal, 10(4), 932–941. https://doi.org/10.1016/J.CJ.2021.11.008

Zhou, X., Carbonetto, P., & Stephens, M. (2013). Polygenic Modelling with Bayesian Sparse Linear Mixed Models. PLOS Genetics, 9(2), e1003264-. https://doi.org/10.1371/journal.pgen.1003264

Zhu, F., Ye, Q., Chen, H., Dong, J., & Wang, T. (2021). Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. Journal of Experimental Botany, 72(10), 3661–3676. https://doi.org/10.1093/jxb/erab

Downloads

Published

07-12-2025

How to Cite

Muhammad Abu Bakar Ghalib, khawar, A., Kashaf Ul Nissa Bilal, Muhammad Ahmed, & Muhammad Shoaib Shabbir. (2025). Integrating Pan-Genomics, CRISPR-Cas9, and Predictive Modelling for Next-Generation Alfalfa Cultivar Development. International Journal of Agriculture Innovations and Cutting-Edge Research (HEC Recognised), 3(4), 128–139. Retrieved from https://jai.bwo-researches.com/index.php/jwr/article/view/188
Loading...