Integrating Pan-Genomics, CRISPR-Cas9, and Predictive Modelling for Next-Generation Alfalfa Cultivar Development
Keywords:
CRISPR/CAS, , Multi-omics, , Proteomics, , Marker-assisted breeding, , Genome-wide association sequencingAbstract
Alfalfa (Medicago sativa L.) is a perennial forage legume, renowned for its wider adaptability and environmental benefits. However, conventional breeding is stagnant and less adaptive because of its autotetraploid genetic complexity. This paper highlights the significant impact of contemporary breeding technologies on accelerating alfalfa breeding. Also focuses on integrating modern breeding technology with the latest biotechnological innovations to ensure the successful improvement of alfalfa. Additionally, genomic data facilitate the identification of genetic loci associated with important agronomic traits, including biomass yield, fodder quality, and abiotic stress tolerance, through marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection (GS). Additionally, we investigate the use of genome editing, specifically CRISPR/Cas9, for targeted genetic enhancement. Combining multi-omics methodologies. Crucially, we stress the importance of integrating GWAS, high-throughput technologies, and machine learning (ML) and artificial intelligence (AI) algorithms to optimize outputs. This paper promotes an innovative, integrated approach to alfalfa breeding that combines predictive modelling, CRISPR-Cas9, and pan-genomics. This pipeline is essential for speeding the development of improved alfalfa to satisfy future agricultural demands by going beyond incremental increases to a systems-level strategy.
References
Alqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. Journal of Advanced Research, 22, 119–135. https://doi.org/10.1016/J.JARE.2019.10.013
Alseekh, S., Kostova, D., Bulut, M., & Fernie, A. R. (2021). Genome-wide association studies: assessing trait characteristics in model and crop plants. In Cellular and Molecular Life Sciences (Vol. 78, Issue 15, pp. 5743–5754). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00018-021-03868-w
Biazzi, E., Nazzicari, N., Pecetti, L., Brummer, E. C., Palmonari, A., Tava, A., & Annicchiarico, P. (2017). Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits. PLOS ONE, 12(1), e0169234-. https://doi.org/10.1371/journal.pone.0169234
Cazenave, A. B., Shah, K., Trammell, T., Komp, M., Hoffman, J., Motes, C. M., & Monteros, M. J. (2019). High-Throughput Approaches for Phenotyping Alfalfa Germplasm under Abiotic Stress in the Field. Plant Phenome Journal, 2(1), 1–13. https://doi.org/10.2135/tppj2019.03.0005
Cheng, T., Zhang, D., Zhang, G., Wang, T., Ren, W., Yuan, F., Liu, Y., Wang, Z., & Zhao, C. (2025). High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges. Artificial Intelligence in Agriculture, 15(1), 98–115. https://doi.org/https://doi.org/10.1016/j.aiia.2025.01.003
Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., Wang, J., Hughes, T. J., Willis, D. K., Clemente, T. E., Diers, B. W., Jiang, J., Hudson, M. E., & Bent, A. F. (2012). Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 338(6111), 1206–1209. https://doi.org/10.1126/science.1228746
Della Coletta, R., Qiu, Y., Ou, S., Hufford, M. B., & Hirsch, C. N. (2021). How the pan-genome is changing crop genomics and improvement. Genome Biology, 22(1), 3. https://doi.org/10.1186/s13059-020-02224-8
Desgagnes, R., Allard, G., Khoudi, H., Castonguay, Y., Lapointe, J., Michaud, R., & Vézina, L.-P. (1995). Genetic transformation of commercial breeding lines of alfalfa (Medicago sativa). Plant Cell Tissue and Organ Culture, 42, 129–140. https://doi.org/10.1007/BF00034229
Fernandez, A. L., Fabrizzi, K. P., Tautges, N. E., Lamb, J. A., & Sheaffer, C. C. (2019). Cutting management and alfalfa stand age effects on organically grown corn grain yield and soil N availability. Renewable Agriculture and Food Systems, 34(2), 144–154. https://doi.org/DOI: 10.1017/S1742170517000394
Furbank, R. T., & Tester, M. (2011). Phenomics – technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16(12), 635–644. https://doi.org/10.1016/j.tplants.2011.09.005
Gabur, I., Chawla, H. S., Snowdon, R. J., & Parkin, I. A. P. (2019). Connecting genome structural variation with complex traits in crop plants. Theoretical and Applied Genetics, 132(3), 733–750. https://doi.org/10.1007/s00122-018-3233-0
Grinberg, N., Lovatt, A., Hegarty, M., Lovatt, A., Skøt, K., Kelly, R., Blackmore, T., Thorogood, D., King, R., Armstead, I., Powell, W., & Skøt, L. (2016). Implementation of Genomic Prediction in Lolium perenne (L.) Breeding Populations. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00133
Hawkins, C., & Yu, L. X. (2018). Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. The Crop Journal, 6(6), 565–575. https://doi.org/10.1016/J.CJ.2018.01.006
He, F., Xu, M., Long, R., Zhu, K., Du, M., Ma, W., Xue, H., Peng, Y., Chen, L., Kang, J., Zhou, Y., Yang, Q., & Zhang, F. (2025). Integrative multi-omics and genomic prediction reveal the genetic basis of early salt tolerance in alfalfa. Journal of Genetics and Genomics. https://doi.org/https://doi.org/10.1016/j.jgg.2025.09.001
He, F., Zhang, F., Jiang, X., Long, R., Wang, Z., Chen, Y., Li, M., Gao, T., Yang, T., Wang, C., Kang, J., Chen, L., & Yang, Q. (2022). A Genome-Wide Association Study Coupled With a Transcriptomic Analysis Reveals the Genetic Loci and Candidate Genes Governing the Flowering Time in Alfalfa (Medicago sativa L.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.913947
Heiba, S. A. A., Tawfick, R., Abdel-Rahman, H., & Rashad, S. (2023). Detected molecular markers for Alfalfa (Medicago sativa) using ISSR and SSR under Egyptian conditions. XI, 2278–2540.
Hrbáčková, M., Dvořák, P., Takáč, T., Tichá, M., Luptovčiak, I., Šamajová, O., Ovečka, M., & Šamaj, J. (2020). Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. In Frontiers in Plant Science (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.00592
James, D., Rennya, P. R., Mallavarapu, M. D., Panigrahi, R. C., & Patel, H. K. (2021). Integrating Pan-Omics Data in a Systems Approach for Crop Improvement: Opportunities and Challenges. In A. Kumar, R. Kumar, P. Shukla, & H. K. Patel (Eds.), Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II) (pp. 215–246). Springer Singapore. https://doi.org/10.1007/978-981-16-2956-3_8
Jannink, J. L., Lorenz, A. J., & Iwata, H. (2010). Genomic selection in plant breeding: From theory to practice. Briefings in Functional Genomics and Proteomics, 9(2), 166–177. https://doi.org/10.1093/BFGP/ELQ001
Jia, C., Wu, X., Chen, M., Wang, Y., Liu, X., Gong, P., Xu, Q., Wang, X., Gao, H., & Wang, Z. (2017). Identification of genetic loci associated with crude protein and mineral concentrations in alfalfa (Medicago sativa) using association mapping. BMC Plant Biology, 17(1), 97. https://doi.org/10.1186/s12870-017-1047-x
Jiang, X., Yu, A., Zhang, F., Yang, T., Wang, C., Gao, T., Yang, Q., Yu, L. X., Wang, Z., & Kang, J. (2022). Identification of QTL and candidate genes associated with biomass yield and Feed Quality in response to water deficit in alfalfa (Medicago sativa L.) using linkage mapping and RNA-Seq. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.996672
JIANG, X., ZHANG, F., WANG, Z., LONG, R., LI, M., HE, F., YANG, X., YANG, C., JIANG, X., YANG, Q., WANG, Q., & KANG, J. (2022). Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.). Journal of Integrative Agriculture, 21(3), 812–818. https://doi.org/https://doi.org/10.1016/S2095-3119(21)63671-7
Jing, Q., Qian, B., Bélanger, G., VanderZaag, A., Jégo, G., Smith, W., Grant, B., Shang, J., Liu, J., He, W., Boote, K., & Hoogenboom, G. (2020). Simulating alfalfa regrowth and biomass in eastern Canada using the CSM-CROPGRO-perennial forage model. European Journal of Agronomy, 113, 125971. https://doi.org/https://doi.org/10.1016/j.eja.2019.125971
Kaur, H., Shannon, L. M., & Samac, D. A. (2024). A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. In BMC Genomics (Vol. 25, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12864-024-10931-w
Kumar, S. (2011). Biotechnological advancements in alfalfa improvement. In Journal of Applied Genetics (Vol. 52, Issue 2, pp. 111–124). https://doi.org/10.1007/s13353-011-0028-2
Li, Z., He, F., Tong, Z., Li, X., Yang, Q., & Hannaway, D. B. (2022). Metabolomic changes in the crown of alfalfa (Medicago sativa L.) during de-acclimation. Scientific Reports, 12(1), 14977. https://doi.org/10.1038/s41598-022-19388-x
Lin, S., Medina, C. A., Boge, B., Hu, J., Fransen, S., Norberg, S., & Yu, L.-X. (2020). Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biology, 20(1), 303. https://doi.org/10.1186/s12870-020-02520-2
Lin, Z., Li, X., Shannon, L. M., Yeh, C.-T., Wang, M. L., Bai, G., Peng, Z., Li, J., Trick, H. N., Clemente, T. E., Doebley, J., Schnable, P. S., Tuinstra, M. R., Tesso, T. T., White, F., & Yu, J. (2012). Parallel domestication of the Shattering1 genes in cereals. Nature Genetics, 44(6), 720–724. https://doi.org/10.1038/ng.2281
Malik, M., Moaeen-ud-Din, M., Bilal, G., Kaukab, G., Saeed, S., Asad, M., Wattoo, F., & Muner, R. (2022). THE USE OF AFLP-PCR MARKERS TO DISCRIMINATE BETWEEN RED SINDHI AND CROSSBRED DAIRY CATTLE OF PAKISTAN. The Journal of Animal and Plant Sciences, 32, 2022. https://doi.org/10.36899/JAPS.2022.1.0396
Meng, Y., Hou, Y., Wang, H., Ji, R., Liu, B., Wen, J., Niu, L., & Lin, H. (2017). Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports, 36(2), 371–374. https://doi.org/10.1007/s00299-016-2069-9
Nitcher, R., Distelfeld, A., Tan, C., Yan, L., & Dubcovsky, J. (2013). Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Molecular Genetics and Genomics, 288(5), 261–275. https://doi.org/10.1007/s00438-013-0746-8
Omar, N. Z., Aizam, N., & Setumin, S. (2025). A COMPARATIVE ANALYSIS OF MACHINE LEARNING MODELS FOR PREDICTING AGRICULTURAL OUTCOMES USING SOIL AND CLIMATE DATA. https://doi.org/10.13140/RG.2.2.16144.52481
Petolescu, C., Sarac, I., Popescu, S., Tenche-Constantinescu, A. M., Petrescu, I., Camen, D., Turc, A., Fora, G. C., Turcus, V., Horablaga, N. M., Gorinoiu, G., Mariana, G., & Onisan, E. (2024). Assessment of Genetic Diversity in Alfalfa Using DNA Polymorphism Analysis and Statistical Tools. Plants, 13(20). https://doi.org/10.3390/plants13202853
Postnikova, O. A., Shao, J., & Nemchinov, L. G. (2013). Analysis of the Alfalfa Root Transcriptome in Response to Salinity Stress. Plant and Cell Physiology, 54(7), 1041–1055. https://doi.org/10.1093/pcp/pct056
Qiang, H., Chen, Z., Zhang, Z., Wang, X., Gao, H., & Wang, Z. (2015). Molecular Diversity and Population Structure of a Worldwide Collection of Cultivated Tetraploid Alfalfa (Medicago sativa subsp. sativa L.) Germplasm as Revealed by Microsatellite Markers. PLOS ONE, 10(4), e0124592-. https://doi.org/10.1371/journal.pone.0124592
Rojas, R. (2013). Neural networks: a systematic introduction.
Russell, Norvig, S. J. , & Peter. (2016). Artificial intelligence : a modern approach. https://thuvienso.hoasen.edu.vn/handle/123456789/8967
Sánchez, G., Frausto Solís, A., & Ojeda Bustamante, J. (2014). Predictive ability of machine learning methods for massive crop yield prediction. In the Fuente Spanish Journal of Agricultural Research (Issue 2). http://hdl.handle.net/20.500.12013/1927
Sayed, M. A., Maurer, A., Schmutzer, T., Schnurbusch, T., Börner, A., Hansson, M., Pillen, K., & Youssef, H. M. (2022). Genome-Wide Association Study of Salt Tolerance-Related Traits during Germination and Seedling Development in an Intermedium-Spike Barley Collection. International Journal of Molecular Sciences, 23(19). https://doi.org/10.3390/ijms231911060
Scheben, A., Batley, J., & Edwards, D. (2017). Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. In Plant Biotechnology Journal (Vol. 15, Issue 2, pp. 149–161). Blackwell Publishing Ltd. https://doi.org/10.1111/pbi.12645
Shi, S., Nan, L., & Smith, K. F. (2017a). The current status, problems, and prospects of alfalfa (Medicago Sativa L.) breeding in China. In Agronomy (Vol. 7, Issue 1). MDPI AG. https://doi.org/10.3390/agronomy7010001
Shi, S., Nan, L., & Smith, K. F. (2017b). The current status, problems, and prospects of alfalfa (Medicago Sativa L.) breeding in China. In Agronomy (Vol. 7, Issue 1). MDPI AG. https://doi.org/10.3390/agronomy7010001
Shi, S., Nan, L., & Smith, K. F. (2017c). The current status, problems, and prospects of alfalfa (Medicago Sativa L.) breeding in China. In Agronomy (Vol. 7, Issue 1). MDPI AG. https://doi.org/10.3390/agronomy7010001
Solozhentseva, L., Piskovatsky, Y., & Lomov, M. (2021). Alfalfa breeding to increase productivity, disease resistance. IOP Conference Series: Earth and Environmental Science, 901, 012012. https://doi.org/10.1088/1755-1315/901/1/012012
Sutton, T., Baumann, U., Hayes, J., Collins, N. C., Shi, B. J., Schnurbusch, T., Hay, A., Mayo, G., Pallotta, M., Tester, M., & Langridge, P. (2007). Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science, 318(5855), 1446–1449. https://doi.org/10.1126/science.1146853
Suwignyo, B., Aristia Rini, E., & Helmiyati, S. (2023). The profile of tropical alfalfa in Indonesia: A review. Saudi Journal of Biological Sciences, 30(1), 103504. https://doi.org/https://doi.org/10.1016/j.sjbs.2022.103504
Tan, L., Li, X., Liu, F., Sun, X., Li, C., Zhu, Z., Fu, Y., Cai, H., Wang, X., Xie, D., & Sun, C. (2008). Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 40(11), 1360–1364. https://doi.org/10.1038/ng.197
Tattaris, M., Reynolds, M. P., & Chapman, S. C. (2016). A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Frontiers in Plant Science, 7(AUG2016). https://doi.org/10.3389/fpls.2016.01131
Tlahig, S., Mohamed, A., Triki, T., Yahia, Y., Yehmed, J., Yahia, H., Guasmi, F., & Loumerem, M. (2025). Integrated agro-morphological and molecular characterization for progeny testing to enhance alfalfa breeding in arid regions of Tunisia. Journal of Agriculture and Food Research, 20, 101793. https://doi.org/https://doi.org/10.1016/j.jafr.2025.101793
Tu, X., Liu, Z., & Zhang, Z. (2018). Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars (Medicago sativa L.) after thrips infestation. BMC Genomics, 19(1), 116. https://doi.org/10.1186/s12864-018-4495-2
Wang, K., Nan, L. L., Xia, J., Yao, Y. H., Cheng, J., & Chen, J. R. (2024). Transcriptome analysis reveals candidate genes for different root types of alfalfa (Medicago sativa) after water stress induced by PEG-6000. Chemical and Biological Technologies in Agriculture, 11(1). https://doi.org/10.1186/s40538-024-00640-7
Wang, Z., Qiang, H., Zhao, H., Xu, R., Zhang, Z., Gao, H., Wang, X., Liu, G., & Zhang, Y. (2016). Association mapping for fibre-related traits and digestibility in alfalfa (Medicago sativa). Frontiers in Plant Science, 7(MAR2016). https://doi.org/10.3389/fpls.2016.00331
Wang, Z., Wang, X., Zhang, H., Ma, L., Zhao, H., Jones, C. S., Chen, J., & Liu, G. (2020). A genome-wide association study approach to the identification of candidate genes underlying agronomic traits in alfalfa (Medicago sativa L.). Plant Biotechnology Journal, 18(3), 611–613. https://doi.org/10.1111/pbi.13251
White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., Feldmann, K. A., French, A. N., Heun, J. T., Hunsaker, D. J., Jenks, M. A., Kimball, B. A., Roth, R. L., Strand, R. J., Thorp, K. R., Wall, G. W., & Wang, G. (2012). Field-based phenomics for plant genetics research. Field Crops Research, 133, 101–112. https://doi.org/https://doi.org/10.1016/j.fcr.2012.04.003
Whitmire, C. D., Vance, J. M., Rasheed, H. K., Missaoui, A., Rasheed, K. M., & Maier, F. W. (2021a). Using Machine Learning and Feature Selection for Alfalfa Yield Prediction. AI (Switzerland), 2(1), 71–88. https://doi.org/10.3390/ai2010006
Whitmire, C. D., Vance, J. M., Rasheed, H. K., Missaoui, A., Rasheed, K. M., & Maier, F. W. (2021b). Using Machine Learning and Feature Selection for Alfalfa Yield Prediction. AI (Switzerland), 2(1), 71–88. https://doi.org/10.3390/ai2010006
Whitmire, C. D., Vance, J. M., Rasheed, H. K., Missaoui, A., Rasheed, K. M., & Maier, F. W. (2021c). Using Machine Learning and Feature Selection for Alfalfa Yield Prediction. AI (Switzerland), 2(1), 71–88. https://doi.org/10.3390/ai2010006
Wolabu, T. W., Cong, L., Park, J. J., Bao, Q., Chen, M., Sun, J., Xu, B., Ge, Y., Chai, M., Liu, Z., & Wang, Z. Y. (2020). Development of a Highly Efficient Multiplex Genome Editing System in Outcrossing Tetraploid Alfalfa (Medicago sativa). Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01063
Würschum, T., Boeven, P. H. G., Langer, S. M., Longin, C. F. H., & Leiser, W. L. (2015). Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genetics, 16(1), 96. https://doi.org/10.1186/s12863-015-0258-0
Yang, Y., Saand, M. A., Huang, L., Abdelaal, W. B., Zhang, J., Wu, Y., Li, J., Sirohi, M. H., & Wang, F. (2021). Applications of Multi-Omics Technologies for Crop Improvement. In Frontiers in Plant Science (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fpls.2021.563953
Young, N. D., Cannon, S. B., Sato, S., Kim, D., Cook, D. R., Town, C. D., Roe, B. A., & Tabata, S. (2005). Sequencing the Genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology, 137(4), 1174–1181. https://doi.org/10.1104/pp.104.057034
Young, N. D., Debellé, F., Oldroyd, G. E. D., Geurts, R., Cannon, S. B., Udvardi, M. K., Benedito, V. A., Mayer, K. F. X., Gouzy, J., Schoof, H., Van de Peer, Y., Proost, S., Cook, D. R., Meyers, B. C., Spannagl, M., Cheung, F., De Mita, S., Krishnakumar, V., Gundlach, H., … Roe, B. A. (2011). The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480(7378), 520–524. https://doi.org/10.1038/nature10625
Young, N. D., & Udvardi, M. (2009). Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology, 12(2), 193–201. https://doi.org/10.1016/J.PBI.2008.11.005
Yu, L. X., Liu, X., Boge, W., & Liu, X. P. (2016). Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00956
Yu, L. X., Zhang, F., Culma, C. M., Lin, S., Niu, Y., Zhang, T., Yang, Q., Smith, M., & Hu, J. (2020). Construction of high-density linkage maps and identification of quantitative trait loci associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Plant Disease, 104(5), 1439–1444. https://doi.org/10.1094/PDIS-08-19-1718-RE
Zhang, F., Kang, J., Long, R., Yu, L. X., Sun, Y., Wang, Z., Zhao, Z., Zhang, T., & Yang, Q. (2020). Construction of a high-density genetic linkage map and mapping quantitative trait loci (QTL) for flowering time in autotetraploid alfalfa (Medicago sativa L.) using genotyping by sequencing. Plant Genome, 13(3). https://doi.org/10.1002/tpg2.20045
Zhang, T., Yu, L.-X., Zheng, P., Li, Y., Rivera, M., Main, D., & Greene, S. L. (2015). Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing. PLOS ONE, 10(9), e0138931-. https://doi.org/10.1371/journal.pone.0138931
Zhang, T., Yu, L.-X., Zheng, P., Li, Y., Rivera, M., Main, D., & Greene, S. L. (2015b). Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing. PLOS ONE, 10(9), e0138931-. https://doi.org/10.1371/journal.pone.0138931
Zhang, Y., & Wang, L. (2025a). Advances in basic biology of alfalfa (Medicago sativa L.): a comprehensive overview. In Horticulture Research (Vol. 12, Issue 7). Oxford University Press. https://doi.org/10.1093/hr/uhaf081
Zhang, Y., & Wang, L. (2025b). Advances in basic biology of alfalfa (Medicago sativa L.): a comprehensive overview. Horticulture Research, 12(7), uhaf081. https://doi.org/10.1093/hr/uhaf081
Zheng, L., Wen, J., Liu, J., Meng, X., Liu, P., Cao, N., Dong, J., & Wang, T. (2022). Fro m model to alfalfa: Gene editing to obtain semidwarf and prostrate growth habits. The Crop Journal, 10(4), 932–941. https://doi.org/10.1016/J.CJ.2021.11.008
Zhou, X., Carbonetto, P., & Stephens, M. (2013). Polygenic Modelling with Bayesian Sparse Linear Mixed Models. PLOS Genetics, 9(2), e1003264-. https://doi.org/10.1371/journal.pgen.1003264
Zhu, F., Ye, Q., Chen, H., Dong, J., & Wang, T. (2021). Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. Journal of Experimental Botany, 72(10), 3661–3676. https://doi.org/10.1093/jxb/erab
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Agriculture Innovations and Cutting-Edge Research (HEC Recognised)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
BWO Research International
15162394 Canada Inc.,
Kitchener, ON, N2G2B3,
Canada