Polysaccharide-Based Hydrogels for Sustainable Agriculture: Recent Advances and Applications
Keywords:
Polysaccharide hydrogels, , Arid soil, , Agriculture, , Biopolymers, , Cross-linking, , Water retention,Abstract
Hydrogels are three-dimensional networks of polymer chains that have the property to absorb and retain a significant amount of water. Polymers like cellulose, chitosan, alginate, starch, and pectin are usually used to prepare hydrogels. Cross-linking is a fundamental process in hydrogel formation, transforming soluble polymers into three-dimensional networks capable of absorbing and retaining large amounts of water. Over the past few years, polysaccharide-based hydrogels have emerged as a sustainable material for agricultural practices to address the issues of limited water supply and increase the protective properties of the soils. This review discusses the types of hydrogels and the principles of swelling and cross-linking of hydrogels, especially in biopolymers (guar gum, pectin, and sodium alginate). These biopolymers are biodegradable, eco-friendly, and increase the capability of arid and semi-arid soils to retain water, enhance the utilization of nutrients, and promote plant growth. A thorough search of scientific databases was conducted to identify the relevant studies that were used to compile the most relevant and reliable results. This review also highlights the recent developments and limitations in the hydrogel technology for sustainable agricultural practices.
References
Abedi-Koupai, J., Sohrab, F., & Swarbrick, G. (2008). Evaluation of Hydrogel Application on Soil Water Retention Characteristics. Journal of Plant Nutrition, 31(2), 317–331. https://doi.org/10.1080/01904160701853928
Palma, D., Lagos, O., Souto, C., Pérez, A., Quezada, L., Hirzel, J., Vera, M., Ulloa, J., & Urbano, B. (2024). Evaluation of a Natural Superabsorbent Polymer on Water Retention Capacity in Coarse-Textured Soils. Water, 16(22), 3186. https://doi.org/10.3390/w16223186
Adjuik, T. A., Nokes, S. E., Montross, M. D., & Wendroth, O. (2022). The impacts of bio-based and synthetic hydrogels on soil hydraulic properties: A review. Polymers, 14(21), 4721. https://doi.org/10.3390/polym14214721
Ahmad, S., Ahmad, M., Manzoor, K., Purwar, R., & Ikram, S. (2019). A review on the latest innovations in natural gum-based hydrogels: Preparations & applications. International Journal of Biological Macromolecules, 136, 870–890. https://doi.org/10.1016/j.ijbiomac.2019.06.113
Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121. https://doi.org/10.1016/j.jare.2013.07.006
Akhter, J., Mahmood, K., Malik, K., Mardan, A., Ahmad, M., & Iqbal, M. (2004). Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat, and chickpea. Plant, Soil and Environment, 50(10), 463–469. https://doi.org/10.17221/4050-PSE
Albalasmeh, A. A., Mohawesh, O., Gharaibeh, A. M., Alghamdi, G. A., Alajlouni, A. M., & Alqudah, M. A. (2022). Effect of hydrogel on corn growth, water use efficiency, and soil properties in a semi-arid region. Journal of the Saudi Society of Agricultural Sciences, 21(8), 518–524. https://doi.org/10.1016/j.jssas.2022.03.001
Ali, K., Asad, Z., Agbna, G. H. D., Saud, A., Khan, A., & Zaidi, S. J. (2024). Progress and Innovations in Hydrogels for Sustainable Agriculture. Agronomy, 14(12), 2815. https://doi.org/10.3390/agronomy14122815
Ata, S., Rasool, A., Islam, A., Bibi, I., Rizwan, M., Azeem, K. M., Qureshi, R. A., & Iqbal, M. (2020). Loading of cefixime to pH-sensitive chitosan-based hydrogel and investigation of controlled release kinetics. International Journal of Biological Macromolecules, 155, 1236–1244. https://doi.org/10.1016/j.ijbiomac.2019.11.091
Bai, W., Zhang, H., Liu, B., Wu, Y., & Song, J. (2010). Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use and Management, 26(3), 253–260. https://doi.org/10.1111/j.1475-2743.2010.00271.
Bai, M., Hou, Y., Li, G., Fang, J., Wu, X., Zhou, Y., Qi, J., Yang, Z., & Li, H. (2025). Sustainable agricultural water supply: Atmospheric water harvesting with degradable and biosafe hydrogel. Chemical Engineering Journal, 503, 158156.
Banedjschafie, S., Durner, W. (2015). Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality. Journal of Plant Nutrition and Soil Science, 178(5), 798–806. https://doi.org/10.1002/jpln.201500128
Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A., Wageh, S., Ramesh, K., & Ramesh, S. (2020). Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers, 12(11), 2702. https://doi.org/10.3390/polym12112702
Berek, A. K. (2014). Exploring the potential roles of biochars on land degradation mitigation. Journal of Degraded and Mining Lands Management, 1(3), 149–158. https://doi.org/10.15243/jdmlm.2014.013.149
Calo, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
Cao, C., Zhao, L., & Li, G. (2024). Using polyvinyl alcohol as polymeric adhesive to enhance the water stability of soil. arXiv. https://arxiv.org/abs/2404.13926
Chang, C., & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84(1), 40–53. https://doi.org/10.1016/j.carbpol.2010.12.023
Chirino, E., Vilagrosa, A., & Vallejo, V. R. (2011). Using hydrogel and clay to improve the water status of seedlings for dryland restoration. Plant and Soil, 344, 99–110. https://doi.org/10.1007/s11104-011-0730-1
Dehkordi, D.K., & Shamsnia, S. A. (2020). Application of reclaimed sodium polyacrylate to increase soil water retention. CLEAN – Soil, Air, Water, 48(11), 2000068. https://doi.org/10.1002/clen.202000068
Elshaikh, A., & Mabrouki, J. (2024). Impact of agricultural soil degradation on water and food security. In Artificial Intelligence Systems in Environmental Engineering (pp. 13–24). CRC Press.http://dx.doi.org/10.1201/9781003436218-2
Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., Rubira, A. F., & Muniz, E. C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal, 72, 365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017
Helalia, A. M., & Letey, J. (1989). Effects of different polymers on seedling emergence, aggregate stability, and crust hardness. Soil Science, 148(3), 199–203.
Hoogendoorn, L., Huertas, M., Nitz, Philip, Qi, Naiyu, Baller, J., Prinz, C., & Graeber, G. (2023). Sustainable, low-cost sorbents based on calcium chloride-loaded polyacrylamide hydrogels. arXiv. https://arxiv.org/abs/2311.03218
Hou, X., Li, R., He, W., Dai, X., Ma, K., & Liang, Y. (2018). Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region. Journal of Soils and Sediments, 18, 816–826. https://doi.org/10.1007/s11368-017-1818-x
Hüttermann, A., Orikiriza, L. J. B., & Agaba, H. (2009). Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. CLEAN – Soil, Air, Water, 37(7), 517–526. https://doi.org/10.1002/clen.200900048
Khanfous, T. J. A. A. K., Idress, Q. B. I., & Hassan, H. M. (2024). Effect of adding different concentrations of hydrogel on the water properties of clay soil. University of Thi-Qar Journal of Agricultural Research, 13(2), 364-372. https://doi.org/10.54174/xc18qz05
Kanagalakshmi, M., Subasini, S., & Pius, A. (2025). Visible-light driven photocatalytic degradation of triphenylmethane and azo dyes using a graphene oxide reinforced pectin hydrogel. Carbohydrate Polymers, 367, 123981.
Kim, S. M., Rhie, Y. H., Kong, S. M., Kim, Y. S., & Na, Y. H. (2022). Synthesis of nanocomposite hydrogels for improved water retention in horticultural soil. ACS Agricultural Science & Technology, 2(6), 1206-1217. https://doi.org/10.1021/acsagscitech.2c00187
Kloxin, A. M., Kasko, A. M., Salinas, C. N., & Anseth, K. S. (2009). Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science, 324(5923), 59–63. https://doi.org/10.1126/science.1169494
Kong, W., Li, Q., Li, X., Su, Y., Yue, Q., & Gao, B. (2019). A biodegradable biomass-based polymeric composite for slow release and water retention. Journal of Environmental Management, 230, 190–198. https://doi.org/10.1016/j.jenvman.2018.09.086
Abedi-Koupai, J., Sohrab, F., & Swarbrick, G. (2008). Evaluation of Hydrogel Application on Soil Water Retention Characteristics. Journal of Plant Nutrition, 31(2), 317–331. https://doi.org/10.1080/01904160701853928
Li, Z., Geng, Y., Bu, K., Chen, Z., Xu, K., & Zhu, C. (2024). Construction of a pectin/sodium alginate composite hydrogel delivery system for improving the bioaccessibility of phycocyanin. International Journal of Biological Macromolecules, 269, 131969. https://doi.org/10.1016/j.ijbiomac.2024.131969
Liao, R., Wu, W., Ren, S., & Yang, P. (2016). Effects of superabsorbent polymers on the hydraulic parameters and water retention properties of soil. Journal of Nanomaterials, 2016(1), 5403976. https://doi.org/10.1155/2016/5403976
Mahgoub, N. A. (2020). Effectiveness of hydrogel application on tomato (Solanum lycopersicum L.) growth and some sandy soil chemical properties under a drip irrigation system. Journal of Soil and Water Sciences, 5(1), 49–54.
Manimaran, V., & Aswitha, K. (2024). Hydrogels in agriculture: Enhancing crop resilience and efficiency. In Advances in Agricultural Sciences, 95–130. Royal Book Publishing.
Montesano, F. F., Parente, A., Santamaria, P., Sannino, A., & Serio, F. (2015). Biodegradable superabsorbent hydrogel increases the water retention properties of growing media and plant growth. Agriculture and Agricultural Science Procedia, 4, 451–458. https://doi.org/10.1016/j.aaspro.2015.03.052
Nordin, N., Afifi, W. F. W., Majid, S. R., & Abu Bakar, N. (2024). Crop resilience enhancement through chitosan-based hydrogels as a sustainable solution for water-limited environments. International Journal of Biological Macromolecules, 282, 137202. https://doi.org/10.1016/j.ijbiomac.2024.137202
Patra, S. K., Poddar, R., Brestic, M., Acharjee, P. U., Bhattacharya, P., Sengupta, S., Pal, P., Bam, N., Biswas, B., Barek, V., Ondrisik, P., Skalicky, M., & Hossain, A. (2022). Prospects of hydrogels in agriculture for enhancing crop and water productivity under water-deficient conditions. International Journal of Polymer Science, 2022, 1–15. https://doi.org/10.1155/2022/4914836
Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced Materials, 18(11), 1345–1360. https://doi.org/10.1002/adma.200501612
Saha, A., Sekharan, S., & Manna, U. (2020). Superabsorbent hydrogel (SAH) as a soil amendment for drought management: A review. Soil & Tillage Research, 204, 104736. https://doi.org/10.1016/j.still.2020.104736
Siddique, S. N., Deng, J., & Mohamedelhassan, E. (2024). Swelling Behaviour of Super-absorbent Laponite Hydrogel under One-dimensional Loading. Geotechnical and Geological Engineering, 42, 4543-4562. https://doi.org/10.1007/s10706-024-02796-3
Skrzypczak, D., Mikula, K., Kossińska, N., Widera, B., Warchoł, J., Moustakas, K., Chojnacka, K., & Witek-Krowiak, A. (2020). Biodegradable hydrogel materials for water storage in agriculture- review of recent research. Desalination and Water Treatment, 194, 324–332. https://doi.org/10.5004/dwt.2020.25436
Stuart, M. A. C., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., & Minko, S. (2010). Emerging applications of stimuli-responsive polymer materials. Nature Materials, 9, 101–113. https://doi.org/10.1038/nmat2614
Athanasiou, K., Ioannou, A., Georgiadou, E. C., Varaldo, A., Tarani, E., Chrissafis, K., Fotopoulos, V., & Krasia-Christoforou, T. (2025). Seed coatings with melatonin-embedded hydrogel biopolymers as green tools to mitigate salinity stress in tomato plants. ACS Applied Polymer Materials, 7(16), 10451–10464. https://doi.org/10.1021/acsapm.5c01261
Tefera, B. B., Bayabil, H. K., Tong, Z., Teshome, F. T., Wenbo, P., Li, Y. C., Hailegnaw, N. S., & Gao, B. (2022). Using liquefied biomass hydrogel to mitigate salinity in salt-affected soils. Chemosphere, 309, 136480. https://doi.org/10.1016/j.chemosphere.2022.136480
Tenório-Neto, E. T., Guilherme, M. R., Lima-Tenório, M. K., Scariot, D. B., Nakamura, C. V., Rubira, A. F., & Kunita, M. H. (2015). Synthesis and characterization of a pH-responsive poly (ethylene glycol)-based hydrogel: Acid degradation, equilibrium swelling, and absorption kinetic characteristics. Colloid and Polymer Science, 293, 3611–3622. https://doi.org/10.1007/s00396-015-3744-z
Wade, E., Zowada, R., & Foudazi, R. (2021). Alginate and guar gum spray application for improving soil aggregation and soil crust integrity. Carbohydrate Polymers Technologies and Applications, 2, 100114. https://doi.org/10.1016/j.carpta.2021.100114
Xu Tenorio, S., Zhang, L., Zhou, L., Mi, J., McLaughlin, N. B., & Liu, J. (2018). Effects of water-absorbing soil amendments on potato growth and soil chemical properties in a semi-arid region. Agricultural Engineering International: CIGR Journal, 20(2), 9–18.
Zowada, R., & Foudazi, R. (2023). Macroporous hydrogels for soil water retention in arid and semi-arid regions. RSC Applied Polymers, 1, 243-253. https://doi.org/10.1039/D3LP00117
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Agriculture Innovations and Cutting-Edge Research (HEC Recognised)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
BWO Research International
15162394 Canada Inc.,
Kitchener, ON, N2G2B3,
Canada