Aphid-Transmitted Plant Viruses

Aphid-Transmitted Plant Viruses

Epidemiology and Integrated Vector Management

Authors

  • Muhammad Afzal Roonjha Lecturer, Department of entomology, Faculty of agriculture, Lasbela University of Agriculture, water and marine sciences, Pakistan
  • Rehman Roonjho Lecturer, Department of Entomology, Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Pakistan
  • Mehraj Ali MPhil Scholar, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
  • Muhammad Anas MPhil Scholar, Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
  • Hanan Khalid MPhil Scholar, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
  • Ameer Jan Lecturer, Department of Botany, University of Makran, Panjgur, Pakistan,

Keywords:

Aphid-transmitted viruses, , Plant virus epidemiology, , Aphid life cycle, , Virus host range, Integrated vector management,

Abstract

Plant-aphid-virus interactions pose a significant threat to global crop production and food security. Aphids transmit plant viruses through persistent, semi-persistent and non-persistent modes, affecting the epidemiology of viral diseases in diverse host plants. Spatial patterns, vector behaviour, migration, and environmental factors such as temperature, humidity, rainfall, and landscape features influence Transmission dynamics. Advances in epidemiological modelling, geographic information systems (GIS), remote sensing, and molecular diagnostics have improved monitoring and detection of aphids and viruses. Integrated vector management strategies, including cultural, biological, chemical, host plant resistance, and physical control, are limiting factors that reduce aphid populations and virus spread. However, management is challenged by the rapid reproduction of aphids, complex virus-vector-host interactions, and the adaptability of viral strains. Key knowledge gaps persist, particularly regarding interactions under field conditions in tropical and subtropical systems. Future directions emphasize biotechnological and digital innovations, including nanotechnology, CRISPR/Cas-based resistance, artificial intelligence, and decision support systems to enhance disease forecasting and crop resilience. Sustainable management of aphid-transmitted plant viruses requires strengthening international collaboration and coordinated surveillance. This review synthesizes current knowledge on epidemiology, biology, and integrated management of aphid-transmitted viruses, while highlighting challenges, research gaps, and emerging innovations to support sustainable agriculture.

References

Abbas, M. U., Usman, H. M., Iqbal, S., Moosa, A., Anwaar, H., & Kiptoo, J. J. (2020). Aphid-borne potato virus Y (PVY) is an emerging disease of potatoes in Punjab, Pakistan. Journal of Entomology and Zoology Studies, 8(4), 2427-2433.

Abdelkhalek, A., & Hafez, E. (2019). Plant Viral Diseases in Egypt and Their Control (pp. 403-421). springer. https://doi.org/10.1007/978-3-030-33161-0_13

Abdelkhalek, A., Behiry, S., Moawad, H., Abd-Elsalam, K., Yassin, Y., & Abdel-Megeed, A. (2022). Rhizobium leguminosarum bv. Viciae-Mediated Silver Nanoparticles for Controlling Bean Yellow Mosaic Virus (BYMV) Infection in Faba Bean Plants. Plants, 12(1), 45. https://doi.org/10.3390/plants12010045

Al-Bazik, A. (2024). Conservation strategies: A study of red mulberry (Morus rubra). International Journal of Agriculture Innovations and Cutting-Edge Research, 2(1), 48-58.

Alsadik, B., Abuhamoor, D., Oude Elberink, S., Al-Rawabdeh, A., Almahasneh, L., Ellsäßer, F. J., Al Asmar, Y., & Awawdeh, M. (2024). Remote Sensing Technologies Using UAVs for Pest and Disease Monitoring: A Review Centred on Date Palm Trees. Remote Sensing, 16(23), 4371. https://doi.org/10.3390/rs16234371

An, X., Zhang, W., Ye, C., Niu, J., Smagghe, G., & Wang, J. (2022). Discovery of a widespread presence bunyavirus that may have symbiont-like relationships with different species of aphids. Insect Science, 29(4), 1120–1134. https://doi.org/10.1111/1744-7917.12989

Anderson, J. A., Ellsworth, P. C., Faria, J. C., Owen, M. D. K., Meissle, M., Pilcher, C. D., Head, G. P., & Shelton, A. M. (2019). Genetically Engineered Crops: Importance of Diversified Integrated Pest Management for Agricultural Sustainability. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00024

Angelella, G., Nalam, V., Nachappa, P., White, J., & Kaplan, I. (2018). Endosymbionts differentially alter the exploratory probing behaviour of a non-persistent plant virus vector. Microbial Ecology, 76(2), 453-458.

Anwar, A., & Kim, J.-K. (2020). Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. International Journal of Molecular Sciences, 21(8), 2695. https://doi.org/10.3390/ijms21082695

Barberà, M., Escrivá, L., Rosato, E., Martínez‐Torres, D., Meca, G., & Collantes‐Alegre, J. M. (2018). Melatonin in the seasonal response of the aphid Acyrthosiphon pisum. Insect Science, 27(2), 224–238. https://doi.org/10.1111/1744-7917.12652

Böckmann, E., & Meyhöfer, R. (2016). Sticky trap monitoring of a pest–predator system in glasshouse tomato crops: Are available trap colours sufficient? Journal of Applied Entomology, 141(5), 339–351. https://doi.org/10.1111/jen.12338

Carmo-Sousa, M., Plaza, M., Fereres, A., Moreno, A., & Garzo, E. (2016). Cucurbit aphid-borne yellows virus(CABYV) modifies the alighting, settling and probing behaviour of its vector Aphis gossypiifavouring its own spread. Annals of Applied Biology, 169(2), 284–297. https://doi.org/10.1111/aab.12300

Carr, J. P., Tungadi, T., Donnelly, R., Bravo-Cazar, A., Rhee, S.-J., Watt, L. G., Mutuku, J. M., Wamonje, F. O., Murphy, A. M., Arinaitwe, W., Pate, A. E., Cunniffe, N. J., & Gilligan, C. A. (2020). Modelling and manipulation of aphid-mediated spread of non-persistently transmitted viruses. Virus Research, 277, 197845. https://doi.org/10.1016/j.virusres.2019.197845

Casteel, C. L., Whitham, S. A., Yang, C., Jander, G., De Jong, H. N., & Nanduri, A. C. (2014). The NIa‐Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). The Plant Journal, 77(4), 653–663. https://doi.org/10.1111/tpj.12417

Chandler, M., Cousins, J. A., Newman, C., Tiago, P., Gillies, C., See, L., Kays, R. W., Buesching, C. D., & Pereira, H. M. (2016). Involving Citizen Scientists in Biodiversity Observation (pp. 211-237). springer. https://doi.org/10.1007/978-3-319-27288-7_9

Charaabi, K., Marrakchi, M., Carletto, J., Vanlerberghe-Masutti, F., Makni, M., & Chavigny, P. (2008). Genotypic diversity of the cotton-melon aphid Aphis gossypii(Glover) in Tunisia is structured by host plants. Bulletin of Entomological Research, 98(4), 333–341. https://doi.org/10.1017/s0007485307005585

Chaturvedi, G., K T., Mishra, A. P., V S, A., Naveen, G., Mishra, S., Jan, U., & Khokhar, C. (2025). Predicting Insect Pest Outbreaks Using Climate Models and Remote Sensing. Uttar Pradesh Journal of Zoology, 46(5), 103-109. https://doi.org/10.56557/upjoz/2025/v46i54827

Chen, W., Shakir, S., Fei, Z., Jander, G., Bigham, M., & Richter, A. (2019). Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch). GigaScience, 8(4). https://doi.org/10.1093/gigascience/giz033

Chinnaraja, C., & Viswanathan, R. (2015). Quantification of sugarcane yellow leaf virus in sugarcane following transmission through aphid vector, Melanaphis sacchari. VirusDisease, 26(4), 237–242. https://doi.org/10.1007/s13337-015-0267-7

Clark, A. J., & Perry, K. L. (2002). Transmissibility of Field Isolates of Soybean Viruses by Aphis glycines. Plant Disease, 86(11), 1219–1222. https://doi.org/10.1094/pdis.2002.86.11.1219

Clemente-Orta, G., Cabello, Á., Garzo, E., Moreno, A., & Fereres, A. (2024). Aphidius colemani Behaviour Changes Depending on Volatile Organic Compounds Emitted by Plants Infected with Viruses with Different Modes of Transmission. Insects, 15(2), 92. https://doi.org/10.3390/insects15020092

Dáder, B., Fereres, A., Moreno, A., & Viñuela, E. (2012). Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission. Viruses, 4(11), 3069–3089. https://doi.org/10.3390/v4113069

Dai, M., Miao, H., Liu, J., Shen, Y., Li, X., & Zhang, S. (2024). Digital Twin System of Pest Management Driven by Data and Model Fusion. Agriculture, 14(7), 1099. https://doi.org/10.3390/agriculture14071099

Dedryver, C. A., Le Ralec, A., & Fabre, F. (2010). The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biologies, 333(6–7), 539–553. https://doi.org/10.1016/j.crvi.2010.03.009

Dong, G., & Fan, Z. (2024). CRISPR/Cas-mediated germplasm improvement and new strategies for crop protection. Crop Health, 2(1). https://doi.org/10.1007/s44297-023-00020-x

Dongiovanni, C., Fumarola, G., Cavalieri, V., Tauro, D., Ancona, S., Carrieri, M., Palmisano, V., Tedone, B., & Di Carolo, M. (2023). Comparing Different Sticky Traps to Monitor the Occurrence of Philaenus spumarius and Neophilaenus campestris, Vectors of Xylella fastidiosa, in Different Crops. Insects, 14(9), 777. https://doi.org/10.3390/insects14090777

Donnelly, R., Gilligan, C. A., Carr, J. P., & Cunniffe, N. J. (2019). Pathogenic modification of plants enhances long-distance dispersal of non-persistently transmitted viruses to new hosts. Ecology, 100(7). https://doi.org/10.1002/ecy.2725

El Bouhssini, M., Street, K., Ogbonnaya, F. C., Mackay, M., Dabbous, A., Abdalla, O., Rihawi, F., Amri, A., Baum, M., & Omran, A. (2010). Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the Focused Identification of Germplasm Strategy (FIGS). Plant Breeding, 130(1), 96–97. https://doi.org/10.1111/j.1439-0523.2010.01814.x

Forkuo, A., Ojo, O., Nwokedi, C., Soyege, O., & Nihi, T. (2025). A conceptual model for geospatial analytics in disease surveillance and epidemiological forecasting. International Medical Science Research Journal, 5(2), 30–57. https://doi.org/10.51594/imsrj.v5i2.1831

Gaafar, Y. Z. A., & Ziebell, H. (2020). Comparative study on three viral enrichment approaches based on RNA extraction for plant virus/viroid detection using high-throughput sequencing. PLOS ONE, 15(8), e0237951. https://doi.org/10.1371/journal.pone.0237951

Gadhave, K. R., Coolong, T., Dutta, B., & Srinivasan, R. (2019). A non-persistent aphid-transmitted Potyvirus differentially alters the vector and non-vector biology through host plant quality manipulation. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39256-5

Gadhave, K. R., Gautam, S., Rasmussen, D. A., & Srinivasan, R. (2020). Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus. Viruses, 12(7), 773. https://doi.org/10.3390/v12070773

Gan, W. C., & Ling, A. P. K. (2022). CRISPR/Cas9 in plant biotechnology: Applications and challenges. Biotechnologia, 103(1), 81–93. https://doi.org/10.5114/bta.2022.113919

Ghosh, D., Chakraborty, S., & M, M. (2021). Impact of viral silencing suppressors on plant viral synergism: a global agro-economic concern. Applied Microbiology and Biotechnology, 105(16–17), 6301–6313. https://doi.org/10.1007/s00253-021-11483-9

Girvin, J., Whitworth, R. J., Rojas, L. M. A., & Smith, C. M. (2017). Resistance of Select Winter Wheat (Triticum aestivum) Cultivars to Rhopalosiphum padi (Hemiptera: Aphididae). Journal of Economic Entomology, 110(4), 1886–1889. https://doi.org/10.1093/jee/tox164

Goelen, T., Paulussen, C., Kos, M., Jacquemyn, H., Rediers, H., Lenaerts, M., Lievens, B., Baets, D., & Wäckers, F. (2017). Gustatory response and longevity in Aphidius parasitoids and their hyperparasitoid Dendrocerus aphidum. Journal of Pest Science, 91(1), 351–360. https://doi.org/10.1007/s10340-017-0907-3

González-Rodríguez, V. E., Cantoral, J. M., Garrido, C., Izquierdo-Bueno, I., & Carbú, M. (2024). Artificial Intelligence: A Promising Tool for Application in Phytopathology. Horticulturae, 10(3), 197. https://doi.org/10.3390/horticulturae10030197

Grantham, M. E., Zhan, Y. X., Brisson, J. A., O’Neil, B. R., & Antonio, C. J. (2016). A case for a joint strategy of diversified bet hedging and plasticity in the pea aphid wing polyphenism. Biology Letters, 12(10), 20160654. https://doi.org/10.1098/rsbl.2016.0654

Grossegesse, M., Stern, D., Hofmann, N., Surtees, R., Kohl, C., Michel, J., & Nitsche, A. (2023). Serological methods for the detection of antibodies against monkeypox virus applicable for laboratories with different biosafety levels. Journal of Medical Virology, 95(12). https://doi.org/10.1002/jmv.29261

Grupe, B., Dieckhoff, C., & Meyhöfer, R. (2023). Keep an eye on natural enemies: What Aphidius on sticky traps tells us about aphid pest population dynamics. Entomologia Experimentalis et Applicata, 171(10), 722–731. https://doi.org/10.1111/eea.13360

Guo, H., Zhang, Y., Li, B., Li, C., Shi, Q., Zhu-Salzman, K., Ge, F., & Sun, Y. (2023). Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses. Proceedings of the National Academy of Sciences, 120(14). https://doi.org/10.1073/pnas.2222040120

Guo, W., Lv, C., Guo, M., Zhao, Q., Yin, X., & Zhang, L. (2023). Innovative applications of artificial intelligence in zoonotic disease management. Science in One Health, 2, 100045. https://doi.org/10.1016/j.soh.2023.100045

Hill, J. H., Alleman, R., Hogg, D. B., & Grau, C. R. (2001). First report of transmission of Soybean mosaic virus and Alfalfa mosaic virus by Aphis glycines in the New World. Plant Disease, 85(5), 561. https://doi.org/10.1094/PDIS.2001.85.5.561C

Hodge, S., & Powell, G. (2008). Do Plant Viruses Facilitate Their Aphid Vectors by Inducing Symptoms that Alter Behaviour and Performance? Environmental Entomology, 37(6), 1573–1581. https://doi.org/10.1603/0046-225x-37.6.1573

Ibrahim, M., & Shah, S. J. A. (2015). Barley yellow dwarf occurrence and resistance stability in wheat varieties of Pakistan. International Journal of Farming and Allied Sciences, 4(3), 207–214.

Ingwell, L. L., Bosque-Pérez, N. A., & Eigenbrode, S. D. (2012). Plant viruses alter insect behaviour to enhance their spread. Scientific Reports, 2(1). https://doi.org/10.1038/srep00578

Jamshed, M., Rehman, S. U., Khan, M. A., Sidiq, A. B., & Khan, N. U. (2024). Comparative analysis of Pakistani wheat germplasm. International Journal of Agriculture Innovations and Cutting-Edge Research, 2(2), 1–7.

Jangra, S., Devendran, R., Kumar, M., Chinnaiah, S., Shukla, B., & Patil, S. R. (2024). Deciphering the Role of Virus Receptors in Plant–Virus–Vector Interactions. Receptors, 3(2), 255–279. https://doi.org/10.3390/receptors3020013

Jayasinghe, W. H., Maruthi, M. N., Akhter, M. S., & Nakahara, K. (2021). Effect of aphid biology and morphology on plant virus transmission. Pest Management Science, 78(2), 416–427. https://doi.org/10.1002/ps.6629

Jeger, M. J., Fereres, A., Malmstrom, C. E., Mauck, K. E., & Wintermantel, W. M. (2023). Epidemiology and management of plant viruses under a changing climate. Phytopathology, 113(9), 1620–1621. https://doi.org/10.1094/PHYTO-07-23-0262-V

Kalleshwaraswamy, C. M., & Kumar, N. K. K. (2008). Transmission Efficiency of Papaya Ringspot Virus by Three Aphid Species. Phytopathology®, 98(5), 541–546. https://doi.org/10.1094/phyto-98-5-0541

Kang, J., Chang, J., Tahir, A., & Wang, H. (2021). Applications of nanotechnology in virus detection, tracking, and infection mechanisms. WIREs Nanomedicine and Nanobiotechnology, 13(4). https://doi.org/10.1002/wnan.1700

Khan, S. M., Ali, S., Ahmad, S., Bukhari, S. A. H., Ejaz, S., & Nawaz, A. (2019). Integrated Pest and Disease Management for Better Agronomic Crop Production (pp. 385–428). Springer Singapore. https://doi.org/10.1007/978-981-32-9783-8_19

Krieger, C., Hugueney, P., Maia-Grondard, A., Brault, V., Boissinot, S., Halter, D., Ziegler-Graff, V., Cognat, V., Pichon, E., Erdinger, M., Baltenweck, R., & Bogaert, F. (2023). An Aphid-Transmitted Virus Reduces the Host Plant Response to Its Vector to Promote Its Transmission. Phytopathology, 113(9), 1745–1760. https://doi.org/10.1094/phyto-12-22-0454-fi

Leather, S. R., Dixon, A. F. G., & Walters, K. F. A. (1989). Factors determining the pest status of the bird cherry-oat aphid, Rhopalo-siphum padi (L.) (Hemiptera: Aphididae), in Europe: a study and review. Bulletin of Entomological Research, 79(3), 345–360. https://doi.org/10.1017/s0007485300018344

Lewis, M. T., Poelstra, J. W., & Michel, A. P. (2025). Host plant flooding stress in soybeans differentially impacts avirulent and virulent soybean aphid (Aphis glycines) biotypes. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-87561-z

Leybourne, D. J., Whitehead, M. A., & Will, T. (2024). Genetic diversity in vector populations influences the transmission efficiency of an important plant virus. Biology Letters, 20(5). https://doi.org/10.1098/rsbl.2024.0095

Li, S., Guo, X., Gao, R., Sun, M., Xu, L., Xu, C., & Kuang, H. (2021). Recent Progress on Biomaterials Fighting against Viruses. Advanced Materials (Deerfield Beach, Fla.), 33(14), 2005424. https://doi.org/10.1002/adma.202005424

Linz, L. B., Liu, S., Chougule, N. P., & Bonning, B. C. (2015). In Vitro Evidence Supports Membrane Alanyl Aminopeptidase N as a Receptor for a Plant Virus in the Pea Aphid Vector. Journal of Virology, 89(22), 11203–11212. https://doi.org/10.1128/jvi.01479-15

Luna, J. M., & House, G. J. (2020). Pest Management in Sustainable Agricultural Systems (pp. 157–173). crc. https://doi.org/10.1201/9781003070474-13

Luo, K., Zhao, H., Wang, X., & Kang, Z. (2022). Prevalent Pest Management Strategies for Grain Aphids: Opportunities and Challenges. Frontiers in Plant Science, 12(eaar7191). https://doi.org/10.3389/fpls.2021.790919

Lv, N., Gao, X., Li, R., Liang, P., Zhang, L., & Cheng, S. (2023). The gut symbiont Sphingomonas mediates imidacloprid resistance in the important agricultural insect pest Aphis gossypii Glover. BMC Biology, 21(1). https://doi.org/10.1186/s12915-023-01586-2

Ma, G., Lann, C. L., Van Baaren, J., & Ma, C.-S. (2024). Effects of climate change on insect phenology (pp. 89–110). Oxford University pressoxford. https://doi.org/10.1093/oso/9780192864161.003.0006

Martay, B., Barlow, K. E., Elston, D. A., Brereton, T. M., Bell, J. R., Harrington, R., Brewer, M. J., Botham, M. S., & Pearce‐Higgins, J. W. (2016). Impacts of climate change on national biodiversity population trends. Ecography, 40(10), 1139–1151. https://doi.org/10.1111/ecog.02411

Mattia, D. J., Vernerey, M.-S., Villegas, M., Ziebell, H., Yvon, M., Blanc, S., Pirolles, E., Michalakis, Y., Zeddam, J.-L., & Gaafar, Y. (2020). Route of a Multipartite Nanovirus across the Body of Its Aphid Vector. Journal of Virology, 94(9). https://doi.org/10.1128/jvi.01998-19

Mauck, K. E., De Moraes, C. M., & Mescher, M. C. (2010). Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences, 107(8), 3600–3605. https://doi.org/10.1073/pnas.0907191107

Medina, R. F., Harrison, K., & Armstrong, S. J. (2017). Genetic population structure of sugarcane aphid, Melanaphis sacchari, in sorghum, sugarcane, and Johnsongrass in the continental USA. Entomologia Experimentalis et Applicata, 162(3), 358–365. https://doi.org/10.1111/eea.12547

Morgan, D. (2000). Population dynamics of the bird cherry‐oat aphid, Rhopalosiphum padi (L.), during the autumn and winter: a modelling approach. Agricultural and Forest Entomology, 2(4), 297–304. https://doi.org/10.1046/j.1461-9563.2000.00079.x

Mottet, C., Caddoux, L., Fontaine, S., Plantamp, C., Bass, C., & Barrès, B. (2024). Myzus persicae resistance to neonicotinoids-unravelling the contribution of different mechanisms to phenotype. Pest Management Science, 80(11), 5852–5863. https://doi.org/10.1002/ps.8316

Moya-Ruiz, C. D., Gómez, P., & Juárez, M. (2023). Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain. Pathogens (Basel, Switzerland), 12(3), 422. https://doi.org/10.3390/pathogens12030422

Murant, A. F. (1990). Dependence of groundnut rosette virus on its satellite RNA and groundnut rosette assistor luteovirus for transmission by Aphis craccivora. Journal of General Virology, 71(9), 2163-2166.

Nault, B. A., Shah, D. A., Straight, K. E., Bachmann, A. C., Sackett, W. M., Dillard, H. R., ... & Gildow, F. E. (2009). Modelling temporal trends in aphid vector dispersal and cucumber mosaic virus epidemics in snap bean. Environmental entomology, 38(5), 1347-1359.

Ng, J. C., & Perry, K. L. (2004). Transmission of plant viruses by aphid vectors. Molecular Plant Pathology, 5(5), 505–511. https://doi.org/10.1111/j.1364-3703.2004.00240.x

Otieno, J. A., Weller, J., Poehling, H.-M., & Stukenberg, N. (2018). Efficacy of LED-enhanced blue sticky traps combined with the synthetic lure Lurem-TR for trapping of western flower thrips (Frankliniella occidentalis). Journal of Pest Science, 91(4), 1301–1314. https://doi.org/10.1007/s10340-018-1005-x

Pinheiro, P. V., Ghanim, M., Alexander, M., Rebelo, A. R., Santos, R. S., Orsburn, B. C., Gray, S., & Cilia, M. (2017). Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors. Molecular & Cellular Proteomics, 16(Suppl 4 1), S230–S243. https://doi.org/10.1074/mcp.m116.063495

Pinheiro, P. V., Kruse, A., Fattah-Hosseini, S., Xu, Y., Rebelo, A. R., Giovannoni, J., Gray, S., Fei, Z., Kramer, M., Heck, M., Wilson, J. R., Zheng, Y., Xu, Y., & Dos Silva, R. S. (2019). Plant Viruses Transmitted in Two Different Modes Produce Differing Effects on Small RNA-Mediated Processes in Their Aphid Vector. Phytobiomes Journal, 3(1), 71–81. https://doi.org/10.1094/pbiomes-10-18-0045-r

Power, A. G. (1996). Competition between Viruses in a Complex Plant‐Pathogen System. Ecology, 77(4), 1004–1010. https://doi.org/10.2307/2265571

Rabadán, M. P., Truniger, V., & Brault, V. (2025). Cucurbit aphid‐borne yellows virus: A growing but overlooked threat to global cucurbit production. Annals of Applied Biology. https://doi.org/10.1111/aab.70016

Rajput, M., Kumar, M., Ortiz, R., Pareek, N., Chawade, A., Choudhary, K., & Vivekanand, V. (2021). RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. Plants, 10(9), 1914. https://doi.org/10.3390/plants10091914

Ren, C., Liang, Z., Wang, W., Zou, X., Li, X., Lin, Z., Wei, X., & Liu, B. (2025). An Innovative Method of Monitoring Cotton Aphid Infestation Based on Data Fusion and Multi-Source Remote Sensing Using Unmanned Aerial Vehicles. Drones, 9(4), 229. https://doi.org/10.3390/drones9040229

Rocca, M., & Messelink, G. J. (2016). Combining lacewings and parasitoids for biological control of foxglove aphids in sweet pepper. Journal of Applied Entomology, 141(5), 402–410. https://doi.org/10.1111/jen.12355

Roonjho, A. R., Awang, R. M., Mokhtar, A. S., & Asib, N. (2022). Development of Saponin-based Nano-emulsion formulations from Phaleria macrocarpa to Control Aphis gossypii. J Adv Zool, 43, 43-55.

Rossi, V., Caffi, T., Salotti, I., & Fedele, G. (2023). Sharing decision-making tools for pest management may foster the implementation of Integrated Pest Management. Food Security, 15(6), 1459–1474. https://doi.org/10.1007/s12571-023-01402-3

Rytkönen, M. J. P. (2004). Not all maps are equal: GIS and spatial analysis in epidemiology. International Journal of Circumpolar Health, 63(1). https://doi.org/10.3402/ijch.v63i1.17642

Sanchez, J. A., López‐Gallego, E., & La‐Spina, M. (2019). The impact of ant mutualistic and antagonistic interactions on the population dynamics of sap-sucking hemipterans in pear orchards. Pest Management Science, 76(4), 1422–1434. https://doi.org/10.1002/ps.5655

Sanders, D., Kehoe, R., Tiley, K., Bennie, J., Cruse, D., Davies, T. W., Frank Van Veen, F. J., & Gaston, K. J. (2015). Artificial nighttime light changes aphid-parasitoid population dynamics. Scientific Reports, 5(1). https://doi.org/10.1038/srep15232

Sandhi, R. K., & Reddy, G. V. P. (2020). Biology, Ecology, and Management Strategies for Pea Aphid (Hemiptera: Aphididae) in Pulse Crops. Journal of Integrated Pest Management, 11(1). https://doi.org/10.1093/jipm/pmaa016

Sangeetha, C., M, R., Damor, J. S., Kumar, P., Moond, V., Pandey, S. K., & Singh, B. (2024). Remote Sensing and Geographic Information Systems for Precision Agriculture: A Review. International Journal of Environment and Climate Change, 14(2), 287–309. https://doi.org/10.9734/ijecc/2024/v14i23945

Saran, S., Chauhan, P., Kumar, V., & Singh, P. (2020). Review of Geospatial Technology for Infectious Disease Surveillance: Use Case on COVID-19. Journal of the Indian Society of Remote Sensing, 48(8), 1121–1138. https://doi.org/10.1007/s12524-020-01140-5

Schwartzberg, E. G., Böröczky, K., & Tumlinson, J. H. (2011). Pea Aphids, Acyrthosiphon Pisum, Suppress Induced Plant Volatiles in Broad Bean, Vicia Faba. Journal of Chemical Ecology, 37(10), 1055–1062. https://doi.org/10.1007/s10886-011-0006-5

Senior, V. L., Oliver, T. H., Evans, L. C., Leather, S. R., & Evans, K. L. (2020). Phenological responses in a sycamore-aphid-parasitoid system and consequences for aphid population dynamics: A 20-year case study. Global Change Biology, 26(5), 2814–2828. https://doi.org/10.1111/gcb.15015

Shair, W., Tayyab, M., Afzal, H., & Bashir, U. (2024). Agricultural extension services in Pakistan: Challenges and prospects. International Journal of Agriculture Innovations and Cutting-Edge Research, 2(3), 68.

Shaw, A. K., Bosque‐Pérez, N. A., Power, A. G., & Peace, A. (2017). Vector population growth and condition-dependent movement drive the spread of plant pathogens. Ecology, 98(8), 2145–2157. https://doi.org/10.1002/ecy.1907

Singer, S. D., Laurie, J. D., Bilichak, A., Kumar, S., & Singh, J. (2021). Genetic Variation and Unintended Risk in the Context of Old and New Breeding Techniques. Critical Reviews in Plant Sciences, 40(1), 68–108. https://doi.org/10.1080/07352689.2021.1883826

Stevens, M., & Lacomme, C. (2017). Transmission of plant viruses. (pp. 323–361). cabi. https://doi.org/10.1079/9781780647098.0323

Sunnucks, P., Turak, E., Chisholm, D., & Hales, D. F. (1998). Evolution of an ecological trait in parthenogenetic Sitobion aphids. Heredity, 81(6), 638–647. https://doi.org/10.1046/j.1365-2540.1998.00444.x

Underwood, N. (2009). Effect of genetic variance in plant quality on the population dynamics of a herbivorous insect. Journal of Animal Ecology, 78(4), 839–847. https://doi.org/10.1111/j.1365-2656.2009.01540.x

Valenzuela, I., & Hoffmann, A. A. (2014). Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomology, 54(3), 292–305. https://doi.org/10.1111/aen.12122

Vanegas, F., Powell, K., Bratanov, D., Gonzalez, F., & Weiss, J. (2018). A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors, 18(1), 260. https://doi.org/10.3390/s18010260

Völkl, W., & Stechmann, D. ‐H. (1998). Parasitism of the black bean aphid (Aphis fabae) by Lysiphlebus fabarum (Hym., Aphidiidae): the influence of host plant and habitat. Journal of Applied Entomology, 122(1–5), 201–206. https://doi.org/10.1111/j.1439-0418.1998.tb01484.x

Wamonje, F. O., Carr, J. P., Tungadi, T. D., Mutuku, J. M., Caulfield, J. C., Cunniffe, N. J., Gilligan, C. A., Murphy, A. M., Bruce, T. J. A., Pate, A. E., Woodcock, C., & Pickett, J. A. (2020). Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean (Phaseolus vulgaris) Plants Through a Combination of Volatile and Surface Cues. Frontiers in Plant Science, 11(11183). https://doi.org/10.3389/fpls.2020.613772

Wang, S., Peng, X., Chen, M., Li, M., Wang, N., Liu, X., & Huang, W. (2024). RpUGT344J7 is involved in the reproduction switch of Rhopalosiphum padi with a holocyclic life cycle. Insect Science, 31(4), 1073–1089. https://doi.org/10.1111/1744-7917.13325

Whitney, S. K., Kucharik, C. J., Meehan, T. D., Townsend, P. A., Hamilton, K., Gratton, C., & Zhu, J. (2016). Explicit modelling of abiotic and landscape factors reveals precipitation and forests associated with aphid abundance. Ecological Applications, 26(8), 2600–2610. https://doi.org/10.1002/eap.1418

Wilberts, L., Jacquemyn, H., Withall, D. M., Birkett, M. A., Lievens, B., Wäckers, F., Thomas, G., Vuts, J., & Caulfield, J. C. (2023). Effects of root inoculation of entomopathogenic fungi on olfactory-mediated behaviour and life-history traits of the parasitoid Aphidius ervi (Haliday) (Hymenoptera: Braconidae). Pest Management Science, 80(2), 307–316. https://doi.org/10.1002/ps.7762

Wu, X., & Ye, J. (2020). Manipulation of Jasmonate Signalling by Plant Viruses and Their Insect Vectors. Viruses, 12(2), 148. https://doi.org/10.3390/v12020148

Xu, T., Liu, Y., Li, X., Zhang, S., Ma, L., Fan, Y., Gao, X., Song, D., & Zhang, Y. (2022). Slow resistance evolution to neonicotinoids in field populations of wheat aphids revealed by insecticide resistance monitoring in China. Pest Management Science, 78(4), 1428–1437. https://doi.org/10.1002/ps.6760

Yadav, S. K. (2017). Realizing the Potential of Nanotechnology for Agriculture and Food Technology. Journal of Tissue Science & Engineering, 08(01). https://doi.org/10.4172/2157-7552.1000195

Zhang, X., Zhang, X., Zhang, D., & Zhang, X. (2024). Artificial intelligence applications in the diagnosis and treatment of bacterial infections. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1449844

Downloads

Published

10-09-2025

How to Cite

Roonjha, M. A. ., Rehman Roonjho, Mehraj Ali, Anas, M., Khalid, H., & Jan, A. (2025). Aphid-Transmitted Plant Viruses: Epidemiology and Integrated Vector Management. International Journal of Agriculture Innovations and Cutting-Edge Research (HEC Recognised), 3(3), 109–126. Retrieved from https://jai.bwo-researches.com/index.php/jwr/article/view/157
Loading...