Biochemical and Physiological Insights into Heat and Drought Stress Tolerance in Chickpea Pollens and Yield
Keywords:
Chickpea, Physiological trait, Genotypes, QTLs, Heat stress, Climate resilienceAbstract
This study aimed to investigate the impact of temperature extremes (heat and cold) and salinity stress on chickpea (Cicer arietinum L.) production, particularly focusing on yield losses and physiological responses under these abiotic stresses. A review of recent experimental and field studies was conducted, incorporating statistical analyses of yield reductions and stress tolerance traits. Data synthesis included quantitative assessments of yield loss percentages and evaluations of antioxidant enzyme activity levels in different chickpea genotypes. Findings revealed that heat stress during the reproductive phase could reduce chickpea yield potential by 30-40%, while combined heat and drought stress might cause yield declines of 40-45%. Stress during pod filling adversely affected pollen viability and pod set, leading to shrivelled pods. The analysis also highlighted that certain chickpea genotypes exhibited higher activities of proline and antioxidant enzymes (linked to the ascorbate-glutathione cycle), which play key roles in heat tolerance. Temperature stress during early growth and reproductive phases significantly diminishes chickpea production by disrupting physiological and reproductive processes. The results underscore the urgent need to develop climate-resilient and stress-tolerant chickpea cultivars tailored for different agroecological regions. To address these challenges, the study recommends leveraging modern genetic tools such as CRISPR and genome-wide association studies (GWASs) to breed chickpea cultivars with superior stress tolerance. Sustained investment in biotechnology and targeted breeding programs will be essential for securing chickpea productivity under changing climate conditions.
References
Bakht, J., Bano, A., Shafi, M., & Dominy, P. (2013). Effect of abscisic acid applications on cold tolerance in chickpea (Cicer arietinum L.). European Journal of Agronomy, 44, 10-21.
Bhatnagar-Mathur, P., Devi, M. J., Reddy, D. S., Lavanya, M., Vadez, V., Serraj, R., Yamaguchi-Shinozaki, K., & Sharma, K. K. (2007). Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 26, 2071-2082.
Brewbaker, J. L., & Kwack, B. H. (1963). The essential role of calcium ions in pollen germination and pollen tube growth. American journal of botany, 50(9), 859-865.
Bueckert, R. A., & Clarke, J. M. (2013). Annual crop adaptation to abiotic stress on the Canadian prairies: Six case studies. Canadian Journal of Plant Science, 93(3), 375-385.
Ceylan, H. A., Türkan, I., & Sekmen, A. H. (2013). Effect of coronatine on antioxidant enzyme response of chickpea roots to a combination of PEG-induced osmotic stress and heat stress. Journal of plant growth regulation, 32, 72-82.
Chinnusamy, V., Schumaker, K., & Zhu, J. K. (2004). Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 55(395), 225-236.
Copeland, L. (2020). A century of agriculture at the University of Sydney. Agricultural science, 31(2), 58-65.
Deokar, A. A., Kondawar, V., Jain, P. K., Karuppayil, S. M., Raju, N., Vadez, V., Varshney, R. K., & Srinivasan, R. (2011). Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and susceptible genotypes of chickpea under terminal drought stress. BMC plant biology, 11, 1-20.
Devi, P., Jha, U. C., Prakash, V., Kumar, S., Parida, S.K., Paul, P. J., Prasad, P. V., Sharma, K. D., Siddique, K. H., & Nayyar, H. (2022). Response of physiological, reproductive function, and yield traits in cultivated chickpea (Cicer arietinum L.) under heat stress. Frontiers in Plant Science, 13, 880519.
Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., & Trent, J. M. (1999). Expression profiling using cDNA microarrays. Nature Genetics, 21(1), 10-14.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188.
Jukanti, A. K., Gaur, P. M., Gowda, C., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108(S1), S11-S26.
Kaur, R., & Prasad, K. (2021). Nutritional characteristics and value-added products of Chickpea (Cicer arietinum)—A review. Journal of Postharvest Technology, 9(2), 1-13.
Kaur, S., Gupta, A., Kaur, N., Sandhu, J., & Gupta, S. (2009). Antioxidative enzymes and sucrose synthase contribute to cold stress tolerance in chickpea. Journal of Agronomy and Crop Science, 195(5), 393-397.
Kumar, S., Kaur, G., & Nayyar, H. (2008). Exogenous application of abscisic acid improves cold tolerance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science, 194(6), 449-456.
Kumar, S., Kaushal, N., Nayyar, H., & Gaur, P. (2012). Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitating the accumulation of osmoprotectants. Acta physiologiae plantarum, 34, 1651-1658.
Kumari, P., Singh, S., & Yadav, S. (2018). Analysis of thermotolerance behaviour of five chickpea genotypes at early growth stages. Brazilian Journal of Botany, 41(3), 551-565.
Mannur, D., Salimath, P., & Mishra, M. (2009). Evaluation of segregating populations for drought-related morphological and physiological traits in chickpea. Journal of Food Legumes, 22(4), 233-238.
Nakano, M., Nobuta, K., Vemaraju, K., Tej, S. S., Skogen, J. W., & Meyers, B. C. (2006). Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Research, 34(suppl_1), D731-D735.
Nayyar, H., Chander, K., Kumar, S., & Bains, T. (2005). Glycine betaine mitigates cold stress damage in chickpea. Agronomy for sustainable development, 25(3), 381-388.
Pareek, A., Rathi, D., Mishra, D., Chakraborty, S., & Chakraborty, N. (2019). Physiological plasticity to high temperature stress in chickpea: Adaptive responses and variable tolerance. Plant Science, 289, 110258.
Paul, P. J., Samineni, S., Thudi, M., Sajja, S. B., Rathore, A., Das, R. R., Khan, A. W., Chaturvedi, S. K., Lavanya, G. R., & Varshney, R. K. (2018). Molecular mapping of QTLs for heat tolerance in chickpea. International journal of molecular sciences, 19(8), 2166.
Ramakrishnan, R. S., Nagre, S., Kumar, A., Sharma, R., Upadhyay, A., & Samaiya, R. (2024). Seed germination and seed vigour induction through foliar application of plant growth regulators and nutrients under drought stress in chickpea (Cicer arietinum L.). Archives of Current Research International, 24(1), 13-23.
Rani, A., Devi, P., Jha, U. C., Sharma, K. D., Siddique, K. H., & Nayyar, H. (2020). Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Frontiers in Plant Science, 10, 1759.
Shah, T., de Villiers, E., Nene, V., Hass, B., Taracha, E., Gardner, M. J., Sansom, C., Pelle, R., & Bishop, R. (2006). Using the transcriptome to annotate the genome revisited: application of massively parallel signature sequencing (MPSS). Gene, 366(1), 104-108.
Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current opinion in plant biology, 6(5), 410-417.
Shunmugam, A. S., Kannan, U., Jiang, Y., Daba, K. A., & Gorim, L. Y. (2018). Physiology-based approaches for breeding of next-generation food legumes. Plants, 7(3), 72.
Singh, P., Nedumaran, S., Boote, K. J., Gaur, P., Srinivas, K., & Bantilan, M. (2014). Climate change impacts and potential benefits of drought and heat tolerance in chickpea in South Asia and East Africa. European Journal of Agronomy, 52, 123-137.
Singhal, P., Jan, A. T., Azam, M., & Haq, Q. M. R. (2016). Plant abiotic stress: a prospective strategy of exploiting promoters as an alternative to overcome the escalating burden. Frontiers in Life Science, 9(1), 52-63.
Sita, K., Sehgal, A., Bhandari, K., Kumar, J., Kumar, S., Singh, S., Siddique, K. H., & Nayyar, H. (2018). Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. Journal of the Science of Food and Agriculture, 98(13), 5134-5141.
Thudi, M., Gaur, P. M., Krishnamurthy, L., Mir, R. R., Kudapa, H., Fikre, A., Kimurto, P., Tripathi, S., Soren, K. R., & Mulwa, R. (2014). Genomics-assisted breeding for drought tolerance in chickpea. Functional Plant Biology, 41(11), 1178-1190.
Ullah, A., Romdhane, L., Rehman, A., & Farooq, M. (2019). Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiology and Biochemistry, 143, 11-18.
Upadhyaya, H. D., Dronavalli, N., Gowda, C., & Singh, S. (2011). Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Science, 51(5), 2079-2094.
Valliyodan, B., & Nguyen, H. T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current opinion in plant biology, 9(2), 189-195.
Varshney, R. K., Thudi, M., Nayak, S. N., Gaur, P. M., Kashiwagi, J., Krishnamurthy, L., Jaganathan, D., Koppolu, J., Bohra, A., & Tripathi, S. (2014). Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 127, 445-462.
Vij, S., & Tyagi, A. K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant biotechnology journal, 5(3), 361-380.
Yadav, R., Juneja, S., & Kumar, S. (2021). Cross priming with drought improves heat-tolerance in chickpea (Cicer arietinum L.) by stimulating small heat shock proteins and antioxidative defence. Environmental Sustainability, 4(1), 171-182.
Berger, J., Kumar, S., Nayyar, H., Street, K., Sandhu, J. S., Henzell, J., Kaur, J., & Clarke, H. (2012). Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crops Research, 126, 119-129.
Devasirvatham, V., Gaur, P., Raju, T., Trethowan, R., & Tan, D. (2015). Field response of chickpea (Cicer arietinum L.) to high temperature. Field Crops Research, 172, 59-71.
Devasirvatham, V., Tan, D., Gaur, P., Raju, T., & Trethowan, R. (2012). High temperature tolerance in chickpea and its implications for plant improvement. Crop and Pasture Science, 63(5), 419-428.
Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H., & Nayyar, H. (2013). Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 40(12), 1334-1349.
Kumar, S., Malik, J., Thakur, P., Kaistha, S., Sharma, K. D., Upadhyaya, H., Berger, J., & Nayyar, H. (2011). Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at the reproductive phase. Acta physiologiae plantarum, 33, 779-787.
Pang, J., Turner, N. C., Khan, T., Du, Y.-L., Xiong, J.-L., Colmer, T. D., Devilla, R., Stefanova, K., & Siddique, K. H. (2017). Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. Journal of Experimental Botany, 68(8), 1973-1985.
Parankusam, S., Bhatnagar-Mathur, P., & Sharma, K. K. (2017). Heat-responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea. Environmental and experimental botany, 141, 132-144.
Pushpavalli, R., Zaman-Allah, M., Turner, N. C., Baddam, R., Rao, M. V., & Vadez, V. (2014). Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Functional Plant Biology, 42(2), 162-174.
Ramamoorthy, P., Lakshmanan, K., Upadhyaya, H. D., Vadez, V., & Varshney, R. K. (2016). Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crops Research, 197, 10-27.
Ramamoorthy, P., Lakshmanan, K., Upadhyaya, H. D., Vadez, V., & Varshney, R. K. (2017). Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crops Research, 201, 146-161.
Singh, L., Kohli, D., Gaikwad, K., Kansal, R., Dahuja, A., Paul, V., Bharadwaj, C., & Jain, P. K. (2021). Effect of drought stress on morphological, biochemical, physiological traits and expression analysis of microRNAs in drought-tolerant and sensitive genotypes of chickpea. Indian Journal of Genetics and Plant Breeding, 81(02), 266-276.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Agriculture Innovations and Cutting-Edge Research (HEC Recognised)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
BWO Research International
15162394 Canada Inc.,
Kitchener, ON, N2G2B3,
Canada