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 Abstract 
Alfalfa (Medicago sativa L.) is a perennial forage legume, renowned for its wider 
adaptability and environmental benefits. However, conventional breeding is stagnant 
and less adaptive because of its autotetraploid genetic complexity. This paper 
highlights the significant impact of contemporary breeding technologies on accelerating 
alfalfa breeding. Also focuses on integrating modern breeding technology with the 
latest biotechnological innovations to ensure the successful improvement of alfalfa. 
Additionally, genomic data facilitate the identification of genetic loci associated with 
important agronomic traits, including biomass yield, fodder quality, and abiotic stress 
tolerance, through marker-assisted selection (MAS), genome-wide association studies 
(GWAS), and genomic selection (GS). Additionally, we investigate the use of genome 
editing, specifically CRISPR/Cas9, for targeted genetic enhancement. Combining 
multi-omics methodologies. Crucially, we stress the importance of integrating GWAS, 
high-throughput technologies, and machine learning (ML) and artificial intelligence 
(AI) algorithms to optimize outputs. This paper promotes an innovative, integrated 
approach to alfalfa breeding that combines predictive modelling, CRISPR-Cas9, and 
pan-genomics. This pipeline is essential for speeding the development of improved 
alfalfa to satisfy future agricultural demands by going beyond incremental increases to 
a systems-level strategy. 
Keywords: CRISPR/CAS, Multi-omics, Proteomics, Marker-assisted breeding, Genome-wide 

association sequencing 
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1-Introduction: 
Medicago sativa, a perennial crop 

known as Queen of Forages (Alfalfa), 
which can thrive for years under the right 
climate conditions, can even survive for up 
to ten years in arid environments. It 
belongs to the Leguminosae family 

(Fernandez et al., 2019; Suwignyo et al., 
2023). Alfalfa breeders have mostly 
concentrated on increasing disease and 
pest resistance, fodder and forage 
nutritional value, winter, and frost 
tolerance to prevent production loss. Since 
the 1940s, various germplasms have been 
mixed, allowing selection for resistance to 
numerous diseases and pests 
(Solozhentseva et al., 2021). Recently, 
GWAS has become a potent technique for 
determining the genetic foundation of 
complex plant traits, such as yield-related 
attributes, disease resistance, and salt 
tolerance (Alseekh et al., 2021). After 
analyzing 291 alfalfa accessions, it was 
found that 21 candidate genes and 49 
single-nucleotide polymorphisms (SNPs) 
were strongly linked to salt tolerance. 
Likewise, researchers have discovered 33 
important SNPs linked to salt tolerance in 
seedlings and seed germination (He et al., 
2025). Additionally, a multi-parent 
breeding population was used to forecast 
GWAS efficiency using machine learning. 
Furthermore, incorporating machine 
learning methods like deep learning, 
random forests, and support vector 
machines has increased crop breeding 
forecast accuracy (Sayed et al., 2022). 

In the past decade, developments in 
omics and multi-omics techniques such as 
environics, genomics, transcriptomics, 
proteomics, and metabolomics have paved 
the way for faster breeding to adapt to 
withstand climatic change and increase 
food supply. Several experiments have 
been conducted to upgrade alfalfa; 
however, thorough characterization and 

correlations between desirable qualities 
require additional genetic and molecular 
study (Hrbáčková et al., 2020). This review 
discusses the role of modern breeding, 
including genomics and multi-omics, with 
the use of machine learning in accelerating 
alfalfa output and nutritional quality by 
combining GWAS with AI technology, 
which can revolutionize crop breeding 
technology with greater efficiency. To 
advance sustainability, this aids in the 
precise introduction of climate-resilient 
cultivars and predictive design. 
2-Challenges in Conventional Breeding: 

Alfalfa's autotetraploid nature, which 
complicates the breeding cycle, is one of the 
limitations of traditional breeding. Due to 
the emphasis on increasing yield, alfalfa 
has a slow breeding cycle and less 
adaptable cultivars. However, because 
conventional breeding techniques typically 
take a long time to generate cultivars that 
are utilized on farms, it is not even 
accomplished using this method (Shi et al., 
2017a). Furthermore, costly, multi-year 
field experiments are necessary to assess 
important traits like yield, winter 
hardiness, and long-term persistence, 
which considerably slow down genetic 
advancement and the creation of new 
varieties (Shi et al., 2017b). 
3-Modern Breeding: 

Modern programs as an alternative 
breeding approach are moving towards 
genotype-based breeding approaches such 
as marker-assisted selection (MAS) and 
genomic selection, which promote faster 
breeding cycles with fewer phenotypic 
evaluations (Jannink et al., 2010). For this, a 
population of alfalfa must be genotyped for 
a set of markers, followed by phenotyping 
for the desired traits (Hawkins & Yu, 2018). 
Molecular markers in alfalfa breeding 
typically use RAPD, SSR, and ISSR Markers 
(Heiba et al., 2023). The benefit in alfalfa 
breeding programs may also be increased 
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by other marker applications, such as 
paternity testing and diversity screening 
during cultivar synthesis (Tlahig et al., 
2025). 
Genetic Mapping and QTL Identification: 

Case studies have analyzed the 
understanding of genetic regulation (QTLs) 
of features of agronomic importance in 
cultivated tetraploid alfalfa. Usually, 
AFLPs and SSRs are convenient, easy-to-
use PCR markers. Due to their mass 
revelation, AFLPs aid in covering the 
whole genome. SSRs are codominant, 
locus-specific, and portable; they primarily 
come from M. truncatula EST databases 

(Malik et al., 2022). On the high-density 
genetic linkage maps created in our earlier 
study, 48 significant QTLs were found. 
Nine major QTLs were found for biomass 
yield (one), plant height (one), CP (two), 
ASH (one), P (two), K (one), and Mg (one) 
that explained more than 10% of the 
phenotypic variance. Based on the RNA-
seq analysis under drought conditions, 31 
potential genes were found in the nine 
major QTL intervals. 22 functional protein 
candidates were ultimately found after 
Blast-P was used to screen potential genes 
governing drought resistance (Jiang et al., 
2022). Standard QTL mapping involves 
constructing a mapping population using 
genetic markers, constructing linkage 
mapping, phenotyping, Qtl analysis using 
software for result prediction (JIANG et al., 
2022). 
Genetic Transformation and CRISPR 
technology: 

M. truncatula has produced a compact, 
deeply sequenced, and well-annotated 
genome, as well as ESTs and the Medicago 
truncatula Gene Expression (Meng et al., 
2017). CRISPR/Cas9-based gene editing 
has been utilized to alter single or multiple 
targets in M. truncatula (Zhu et al., 2021). In 
past years, research has shown that 
MsGA3ox1 gene editing resulted in 

semidwarf and prostrate alfalfa with 
numerous secondary and primary 
branches, leaf and stem ratio, and crude 
protein levels (Zheng et al., 2022). 
Researchers have created a highly efficient 
multiplex gRNA genome editing in alfalfa, 
which allows the production of 
homozygous mutants with deletion of the 
four allele copies in the T0 generation. This 
method could be applied to genome editing 
with complex genomes, particularly 
legume species (Wolabu et al., 2020). 

Research outlines a genetic 
transformation method for introducing 
DNA into economically significant winter-
hardy alfalfa breeding lines using 
Agrobacterium infection. Out of around 
1000 genotypes across 11 breeding lines, 
three particularly regenerative genotypes 
have been chosen. The capacity to generate 
stable transgenic material was evaluated as 
combinations of bacterial strains (C58, 
A281, LBA4404), expression vectors 
(pGA482, pGA643, pBibKan), and 
genotypes (11.9, 8.8, 1.5). Southern 
hybridization, recall utilizing assays, and 
nptII-specific PCR amplification were used 
to further select putative transgenic 
plantlets. According to the predicted 
transformation probability, strain LBA4404 
with genotype 11.9 and the vector pGA482 
has a transformation efficiency of above 
60% and at least 10% of the calluses still 
have the capacity to develop into embryos 

(Petolescu et al., 2024). 
Genome-wide association sequencing 
(GWAS) in Alfalfa: 

Genome-wide association studies 
(GWAS) help precisely locate single-
nucleotide polymorphisms (SNPs). With 
the development of sequencing and genetic 
analysis methods of GWAS, in several 
alfalfa populations, a set of candidate SNP 
markers was identified to be responsible 
for critical quantitative traits (Biazzi et al., 
2017; T. Zhang et al., 2015). Using 336 
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genotypes, GWAS conducted several 
critical alfalfa variables, including fibre-
related traits and digestibility, crude 
protein and mineral concentrations, and 
nine biomass-related traits (Jia et al., 2017; 
Z. Wang et al., 2016). Using half-sib 
offspring produced from three cultivars, 
many SNPs linked to forage quality were 
found (Z. Wang et al., 2020). GWAS uses 
high-density markers across the entire 
genome to find genetic loci related to 
desired attributes (Scheben et al., 2017). It 
has successfully been used to identify and 
analyze DNA markers related to 
agronomic properties in alfalfa and its close 
relative, M. truncatula. GBS markers were 
used to create high-density linkage maps of 
M. sativa and M. truncatula (Alqudah et al., 
2020; Yu et al., 2020).  

Although many sequencing approaches 
have been utilized to identify important 
markers related to biomass and cell wall 
biosynthesis in M. truncatula, they have 
focused solely on drought resistance (Li et 
al., 2014; Yu et al., 2020; F. Zhang et al., 
2020; T. Zhang et al., 2015), salt tolerance 

(Yu et al., 2016), and forage quality, with 
few focusing on genetic and molecular 
regulatory mechanisms underlying 
flowering time traits in alfalfa (Biazzi et al., 
2017; He et al., 2022; Lin et al., 2020, 2021; 
Sakiroglu & Brummer, 2017). 
Genetic Approaches for Alfalfa 
Improvement: 

Alfalfa genetics study demonstrates the 
widespread use of molecular approaches 
for both fundamental and applied plant 
improvement. Genetic techniques have 
been employed in two primary areas: 
genomics and transgenesis. In genomics, 
the identification of genes of interest and 
their regulatory components was made 
possible by molecular markers, structural 
genomics, and functional genomics.  As an 
alternative, the transgenic method entails 
introducing particular and beneficial genes 

into alfalfa to enhance the desired 
characteristics (S. Kumar, 2011; Y. Zhang & 
Wang, 2025a). 
Multi-Omics Approaches in Alfalfa: 

Multiomics approaches combine 
several biological data from the same 
samples, including transcriptomics, 
proteomics, metabolomics, and genomics, 
to provide efficient case studies to evaluate 
the results. To find outcomes more 
precisely, these combined datasets are 
evaluated utilizing sophisticated computer 
techniques. 
Pan-Genomics: 

Pan-genomics was first proposed in 
2005 and has grown significantly in the last 
twenty years because of the introduction of 
PacBio and ONT platforms. In contrast to 
short insertions/deletions and SNPs, 
structural differences (PAVs) and (SVs) 
found by pan analysis play an important 
role in the analysis of complex features. 
Structural differences discovered during 
the pan-genome era prompt a review of 
phenotypic grounds. SVs have previously 
been linked to environmental changes 

(Cook et al., 2012; Sutton et al., 2007), 
flowering period(Nitcher et al., 2013; 
Würschum et al., 2015), stress tolerance 

(Gabur et al., 2019), and plant 
domestication features (Tan et al., 2008; 
Zhou et al., 2013) and dehiscence (Z. Lin et 
al., 2012). (“Multi-omics revolution to 
promote plant breeding efficiency”) 
Breeders can increase genetic structure to 
improve crop cultivation in changing 
climates, and scientists can investigate 
functional alleles for different variations 
using novel methodology made easier by 
the comprehensive composition of genome 
heterogeneity described by genomes and 
pan-genomes (Della Coletta et al., 2021; 
James et al., 2021). 
Table no 1:  

This table explains the comparison of 
pan-genomics reference genomes in alfalfa 
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over the decade. INDELs, SVs, and SNPs 
were used in the study. Results have 
explained that the PGGB pipeline followed 
by Minigraph-Cactus (1.6 GB) and 
minigraph (1.4 GB), according to the 
comparison (Kaur et al., 2024). 

Features Mini 
graph 

Minigr
aph- 
Cactus 

PGGB Refer
ence 

Nodes 
Count 

918,744 56,279,7
82 

62,708,2
82 

(Kaur 
et al., 
2024) 

Edges/Link
s Count 

1,292,00
3 

76,572,2
77 

87,025,9
31 

(Kaur 
et al., 
2024) 

Segments/S
equence 
Count 

307,012 920,868 62,708,2
82 

(Kaur 
et al., 
2024) 

Total Length 
(bp) 

1,369,70
2,218 

1,577,59
1,934 

2,931,70
9,605 

(Kaur 
et al., 
2024 

Run Time 
(hh: mm: 
ss)b 

6:39:59 7:29:44 38:56:23 (Kaur 
et al., 
2024) 

Total 
variants 
count 

163,292 10,049,0
82 

13,839,0
06 

(Kaur 
et al., 
2024) 

SNPs 0 6,535,28
0 

9,682,41
8 

(Kaur 
et al., 
2024) 

SVs and 
INDELs 

163,292 4,098,99
1 

4,156,58
8 

(Kaur 
et al., 
2024) 

Transcriptomics: 
Transcriptomic research contributed to 

our understanding of alfalfa tolerance to 
aphids, stripes, and nematodes. Aphids are 
severe insect pests that significantly reduce 
alfalfa productivity. A transcriptome 
analysis was performed on two alfalfa 
cultivars with varying aphid resistance 
levels. Defensive mechanisms of both 
cultivars relied heavily on genes involved 
in salicylic acid production. The resistance 
of alfalfa to insects, primarily aphids, was 
primarily determined by the activating 
genes involved in linoleic acid, which is 
essential for jasmonic acid and flavonoid 
biosynthesis. Genes involved with 
jasmonic acid production also have 
potential for alfalfa resistance to strip. 
Furthermore, genes involved in 

degradation, metabolism, and flavonoid 
production also contributed to the 
resistance (Tu et al., 2018).  
Table no 2: 

This table represents the candidate 
genes revealed through transcriptomics 
after water stress induced by PEG-6000. 
According to the data, drought stress 
strongly upregulates important genes in 
the plant hormone signalling pathway, 
especially those associated with ABA. This 
implies that these genes are essential for 
alfalfa's drought response, most likely 
through controlling osmotic balance and 
water use (K. Wang et al., 2024). This is a 
great starting point for candidate genes, but 
not validated, as there is no phenotypic 
data based on results. 

Gene ID log2F
C 

Gene 
description 

Referenc
e 

MS. 
gene0206
47 

10.06 Transcription 
factor MYB36 

(K. 
Wang et 
al., 2024) 

MS. 
gene0584
75 

9.51 WRKY 
transcription 
factor 40 

(K. 
Wang et 
al., 2024) 

MS. 
gene9337
2 

6.04 Abscisic acid 
receptor PYL4 

(K. 
Wang et 
al., 2024) 

MS. 
gene0720
46 

3.47 Serine/threoni
ne-protein 
kinase SRK2A 

(K. 
Wang et 
al., 2024) 

MS. 
gene0129
75 

4.21 ABA-
responsive 
element-
binding protein 

(K. 
Wang et 
al., 2024) 

Proteomics and Metabolomics: 
Over the last 20 years, alfalfa has 

sparked significant interest in proteomics 
and metabolomics. A significant effort was 
made to locate novel proteins and 
metabolites (Table 1) involved in alfalfa 
development and stress response 

(Hrbáčková et al., 2020).  
Table no 3. 

Metabolites involved in alfalfa during 
deacclimation. Key metabolites found in 
alfalfa during deacclimation, which cause 
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metabolic changes, are discussed by Li et al. 
(2022): 

SR.NO WL44
0_2 vs 
WL44
0_1 

ZD
_2 
vs 
ZD
_1 

ZD_1 
vs 
WL44
0_1 

ZD_2 
vs 
WL44
0_2 

Refere
nce 

All 107 74 91 81 
(Li et 
al., 
2022) 

Upregulat
ed 

27 42 25 54 
(Li et 
al., 
2022) 

Downregu
lated 

80 32 66 27 
(Li et 
al., 
2022) 

Annotated 
in KEGG 

23 14 19 15 
(Li et 
al., 
2022) 

 
Figure 1. Described the Integration of 
multi-omics into modern breeding to 
promote sustainability in Alfalfa 

High-Throughput Phenotyping in Alfalfa 
Breeding: 

Remote sensing technologies, 
particularly high-throughput phenotyping, 
are becoming more commonly available, 
allowing for the screening of thousands of 
plants under varied conditions (White et 
al., 2012; Whitmire et al., 2021a). The 
development and use of high-throughput 
phenotyping technology, such as drones 
and ground-based sensors, can assist a 
variety of screening and breeding 
applications. These include assessing 
multiple accessions from germplasm 

collections for allele mining and 
quantifying slight differences in 
productivity between breeding lines 

(Furbank & Tester, 2011; Tattaris et al., 
2016). Additional benefits of this and other 
sensor-based technologies include speedy 
data collection and processing, among 
other things (Cazenave et al., 2019). Using 
high-throughput sequencing technology, 
researchers discovered that salt stress 
affects many genes. Among the most 
affected were genes with known roles, such 
as DFR (DFR), transcription factor MYB59 
(ERD), and IP5P2. The study discovered 
that salinity stress activated 86 
transcription factors, including those from 
the GRAS, ARR, JUMONJI, and MYB 
families, which were selectively enhanced 
in the tolerant alfalfa cultivar (Postnikova et 
al., 2013). 

The main issues in phenotyping of 
forage are the optimization of features that 
increase the productivity (Cheng et al., 
2025).  
(1) Interactions between genotypes and the 
environment  
(2) Integrated HTP technologies  
(3) Connecting Plant and Animal Sciences  
(4) Sustainability and Environmental 
Impact 
Role of Machine learning in Alfalfa 
Breeding: 

Prediction of livestock feed is vital in 
almost everyone's daily lives, and 
numerous elements of data can be 
obtained. Combination with matching 
weather data can be utilized to train 
learning models for yield prediction and 
desired traits (Whitmire et al., 2021b). For 
this, we select the most regularly used ML 
models in the related area and the field, for 
the normal operation with the desired data 
set. We examined the effects of several 
feature selection techniques on machine 
learning (ML) models trained to forecast 
alfalfa production using yield data of 
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various alfalfa varieties over several years 
in Kentucky and Georgia. Linear regression 
is one of the most frequent machine 
learning techniques that is commonly used 
as a baseline to compare the outcomes of 
other techniques in the field (Russell et al., 
2016). Neural networks implement 
functions that can reduce the error between 
predictions and actual values (Rojas, 2013). 
Support vector machines (SVMs) are 
another strategy. However, this method 
can also locate nonlinear data (Sánchez et 
al., 2014). Both K-Nearest Neighbours and 
regression locate the data of productivity 
with great precision and compatibility (Jing et al., 
2020; Whitmire et al., 2021a).Cross-
validation was used in the development of 
linear regression, regression trees, support 
vector machines, neural networks, 
Bayesian regression, and k-nearest 
neighbours. The random forest and k-
nearest neighbour techniques produced an 
average R value greater than 0.95 using 
these features. Even on basic datasets with 
a few variables, it demonstrates promise in 
crop yield prediction, and reporting 
accuracies in R and R2 provides an easy 
way to compare outcomes across different 
crops (Whitmire et al., 2021c). Recent 
research has focused on machine learning 
for crop prediction. Several machine 
learning techniques, including decision 
trees, support vector machines, and neural 
networks, have been examined by 
researchers to demonstrate how well they 
can forecast crop yields in various 
scenarios. These experiments highlight 
how ML may greatly improve yield 
prediction accuracy (Omar et al., 2025). 
Discussion: 

Various biotic and abiotic stressors, the 
integration of multi-omics data can 
improve the interpretation of gene 
functions and networks. Over the past few 
decades, several "omics" techniques have 
become effective technologies for plant 

systems. A new generation of omics, 
including proteomics, transcriptomics, and 
genomics, has been made possible by 
developments in next-generation 
sequencing (NGS). In agricultural research, 
however, metabolomics, ionomics, and 
phenomics have also been thoroughly 
studied. Growth, senescence, yield, and the 
reactions to biotic and abiotic stress in 
many crops have all been clarified by multi-
omics approaches with high-throughput 
techniques (Shi et al., 2017c; Yang et al., 
2021). The development of a molecular 
design paradigm for the "ideal alfalfa" 
requires the use of pangenomics, the 
clarification of self-incompatibility (SI) 
processes, the innovative de novo 
domestication method, and state-of-the-art 
intelligent breeding techniques (Y. Zhang & 
Wang, 2025b). 

Compared to conventional breeding 
approaches, modern alfalfa breeding 
significantly accelerates the development 
of superior, resilient varieties by using 
genetic tools, which include DNA 
sequencing, gene editing, and HTP 
technology, to rapidly increase and select 
favourable breeding features. Using high-
throughput phenotyping (HTP) is 
transforming alfalfa breeding by effectively 
screening huge breeding populations for 
important characteristics, including 
biomass, yield, and nutritional quality in a 
variety of settings. Another important and 
emerging technique known as Machine 
learning (ML) is increasingly being used to 
examine complex datasets. 

Thus, we can find desired traits in 
alfalfa that can improve biomass formation, 
nutritional quality, blooming time, and 
resilience to different stresses by combining 
machine learning approaches with 
contemporary breeding technology. 
Conclusion and Future Perspective: 

To ensure faster breeding, new 
breeding techniques, including multi-



International Journal of Agriculture Innovation and Cutting-Edge Research 3(4) 

235 | P a g e   w w w . B W O - R e s e a r c h e s . c o m ,  P K - C A .  

omics, must be integrated for trait 
improvement. This integration is necessary 
to change alfalfa breeding from traditional 
breeding to intelligent breeding that 
guarantees a supercop that is climate 
resilient. This is crucial for creating a 
sustainable agriculture with food security 
since it is not only enhancing alfalfa 
breeding but also reexamining it in the 
context of a new era of predictive design. 

To capture greater diversity, future 
studies will concentrate on increasing 
alfalfa breeding. We must integrate multi-
omics data to functionally annotate these 
genes and their intricate relationships to 
close the gap between genotype and 
phenotype. This will make it possible to 
create more effective models and use multi-
gene CRISPR techniques to add intricate 
features like nitrogen utilization efficiency. 
The primary goal for increased production 
should be multi-year field validation of 
modified cultivars, whose performance 
data will be transmitted back into the 
system, completing the loop and 
developing self-improving, predictive 
breeding. 
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