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 Abstract 
Plant Na +/H + antiporter (NHX) genes enhance salt tolerance by sequestering Na+ 
into vacuoles or effluxing it across the plasma membrane. This study aimed to 
identify and characterize NHX genes in fava bean. Seven VfNHX genes were explored 
and named as VfNHX1-VfNHX7 on the basis of their order in the phylogenetic tree. 
The protein length, isoelectric points and GRAVY of all 7 proteins ranged from 529-
1155, 5.2-8.9 and 0.142-0.637, respectively. The vacuole was predicted as a major 
residence for all 7 NHX proteins. Amiloride was conserved in the third motif of all 
members except VfNHX7. Exons′ number in VfNHX genes ranged from 14-23. 
Segmental duplication contributed 28.5% to the VfNHX gene family expansion.  
Ka/Ks ratio of paralogs revealed that they were all under purifying selection. Salt-
associated cis-acting elements, including GT1-motif, TGACG-motif, ABRE, G-box, 
MBS, and TGA, were detected in VfNHX promoters. This study provides a base for 
functional validation of VfNHX genes and their contribution towards salt tolerance.  
Keywords: Fava bean, NHX, salt stress, genome-wide analysis 

 
 

DOI:  https://zenodo.org/records/17213849 

Journal Link:  https://jai.bwo-researches.com/index.php/jwr/index  

Paper Link: https://jai.bwo-researches.com/index.php/jwr/article/view/169 

Publication Process Received: 11 Aug 2025/ Revised: 22 Sep 2025/ Accepted: 25 Sep 2025/ Published: 29 Sep 2025 

ISSN: Online [3007-0929], Print [3007-0910] 

Copyright: © 2025 by the first author. This article is an open-access article distributed under the terms and 
conditions of the Creative Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/). 

Indexing: 

          
Publisher:   BWO Research International (15162394 Canada Inc.) https://www.bwo-researches.com  

mailto:au254837@gmail.com
https://orcid.org/0000-0002-2469-158X
mailto:dr.shoaib@ustb.edu.pk
mailto:zamarud@awkum.edu.pk
https://orcid.org0009-0008-3561-886x/
mailto:zeeshah_khan1991@yahoo.com
mailto:iqrashah301@gmail.com
mailto:habibaalikhattak@gmail.com
https://orcid.org/0009-0001-1972-8945
https://zenodo.org/records/17213849
https://jai.bwo-researches.com/index.php/jwr/index
https://jai.bwo-researches.com/index.php/jwr/article/view/169
https://creativecommons.org/licenses/by/4.0/
https://www.bwo-researches.com/


159-Advances in Genetic Mapping of Cotton                                                              International Journal of Agriculture Innovation and Cutting-Edge Research 3(3) 

157 | P a g e   w w w . B W O - R e s e a r c h e s . c o m ,  P K - C A .  

Introduction 
Salt stress is one of the major abiotic 

stresses that affects plant growth and 
development (Deinlein et al., 2014). 
Excessive salt concentration has drastically 
reduced the area under cultivation of 
important crops, squeezing the existing 
farmland and irrigated land by 6% and 
20%, respectively (Munns & Tester, 2008).  
Under salt stress, higher accumulation of 
Na+ and Cl ions in the chloroplasts 
decreases the chlorophyll content, thus 
inhibiting photosynthesis (Chutipaijit et 
al., 2011). Poor seed germination, growth 
and flowering are some of the early 
symptoms of salinity (Chandna et al., 
2013). The plant tissues become toxic due 
to elevated Na+ concentrations for a 
prolonged period, affecting intracellular 
K+ homeostasis (Shabala & Cuin, 2008). A 
critical Na+/K+ ratio in the cells is 
mandatory for the efficient functioning of 
cytosolic enzymes (Mahajan et al., 2008).  

The Na +/H + antiporters (NHX) are 
proteins embedded in the vacuolar 
membrane that exchange sodium (Na+) or 
sometimes potassium ions (K+) for 
protons (H+) across cellular membranes 
(Brett et al., 2005). The genes encoding 
these transport proteins constitute a 
family known as the NHX family that 
plays a key role in maintaining ion 
homeostasis, pH regulation and 
conferring resistance to salt stress in 
plants (Van Zelm et al., 2020). Two H+ 
pumps, including vacuolar H+-ATPases 
(V-ATPase) and H+-pyrophosphatases 
(H+-PPase), create a proton gradient 
across the tonoplast by actively pumping 
H+ ions from the cytosol into the vacuole 
at the expense of energy derived from 
ATP or pyrophosphate (PPi) (Aharon et 
al., 2003). This H+ gradient across 
membranes is essential to power 
secondary transporters like NHX. Under 
salt stress, NHX exchanges cytosolic Na+ 

with vacuolar H+ across the tonoplast. 
This helps sequester excess Na+ into the 
vacuole, protecting the cytoplasm from 
Na+ toxicity and contributing to salt 
tolerance in plants (Bassil et al., 2011). 
Potassium (K+) is a vital macronutrient for 
plants and is involved in enzyme 
activation, osmoregulation, and turgor 
pressure maintenance (Yamaguchi et al., 
2003). H+/K+ exchangers (particularly in 
vacuoles) allow K+ to be sequestered into 
vacuoles during surplus and released 
when needed, keeping cytosolic K+ levels 
optimal. Eight NHX genes were first 
identified across the Arabidopsis genome 
with 3 subgroups (Brett et al., 2005). 

 NHX genes are associated with many 
biochemical processes like coping with 
salt stress, regulating cell division, vesicle 
transportation across the membrane and 
maintaining a relatively constant pH. 
Irregular cell division in Arabidopsis has 
been witnessed upon inactivating 
AtNHX5 and AtNHX6, which has led to 
poor root and embryo development 
(Dragwidge et al., 2019). Similarly, 
OsNHX1, 2, 3 and 5 have exhibited 
elevated expression upon exposure to salt 
and abscisic acid stress (Fukuda et al., 
2011).  In other studies, rye grass modified 
with the rice OsNHX1 gene was able to 
withstand the detrimental effects of salt 
stress. Likewise, genetically modified B. 
napus plants grew well under high salt 
concentration (200 mM salt. Genetically 
manipulated rice with the AgNHX1 gene 
from Atriplex gmelinii exhibited better 
growth compared to the wild type at 
elevated salt stress. Overexpression of 
AtNHX1 and SsNHX1 has significantly 
contributed to salt tolerance of tomato 
(Manik et al., 2015) and M. sativa (Wu et 
al., 2019a)  

Fava bean is an important leguminous 
crop that belongs to the family Fabaceae. 
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This crop is grown on 2.6 million hectares 
with an annual production of 5.4 million 
tonnes (FAO, 2022). Fava bean is a 
nutritionally rich crop with high content of 
protein (27–40%) and carbohydrate (50–
60%) (Kumar et al., 2015). It is also an 
excellent source of L-DOPA, a precursor 
used in treating Parkinson’s disease (Singh 
et al., 2013). Additionally, fava bean 
contributes to sustainable agriculture by 
increasing crop yields through their ability 
to fix nitrogen (Barton et al., 2014). Fava 
beans can tolerate a considerable level (up 
to ~5.5–6 dS/m) of saline water (Katerji et 
al., 2005). Comparative studies have 
revealed a higher salinity threshold for 
fava bean compared to chickpea and lentil 
(Arslan, 2016). Fava bean has exhibited a 
better salt tolerance at the germination 
stage among the legume crops (El-Kholy et 
al., 2021). Similarly, different varieties of 
fava bean have shown a variable level of 
salt tolerance upon exposure to salt stress 
ranging from 25–100 mM NaCl (Abdel 
Latef et al., 2014). Keeping in view the salt-
tolerant nature of fava bean, the present 
study was conducted with the assumption 
that fava bean is a potential repository of 
NHX genes.  
Material and Methods  
Identification of NHX genes across the 
faba bean (Vicia faba) genome  

AtNHX1, 5, 7 and 8 sequences of 
Arabidopsis thaliana were isolated from 
Phytozome v.13 (https://phytozome-
next.jgi.doe.gov) and blasted against the 
fava bean proteome available in 
Phytozome v.13 for extracting VfNHX 
transcripts. Short sequences, truncated 
sequences/hits were removed.  
Physico-chemical characterization of 
VfNHXs proteins  

Protein length and CDS of VfNHXs 
were taken from phytozome. Similarly, 
other features of VfNHX proteins, 
including PI, molecular weight, and 

GRAVY, were obtained from Expasy 
Protparam 
(https://web.expasy.org/protparam)  
Conserved domain and interspecific 
phylogeny of VfNHX Proteins 

Two files, including renamed protein 
and hitdata files, mandatory for finding 
conserved domains, were obtained from 
TBtool.v1.09854 (Chen et al., 2018) and 
conserved domain database (Marchler-
Bauer et al., 2015), respectively. The files 
were subjected to TBtool.v1.09854 for 
generating domain architecture (Chen et al., 
2018).  VfNHX sequences were inserted in 
MEGA 12 (Kumar et al., 2016) for exploring 
phylogeny among Vicia faba, Arabidopsis 
thaliana, Glycine max, Medicago truncatula, 
Oryza sativa and Solanum lycopersicum based 
on maximum likelihood (ML, 1,000 
bootstrap replicates). 
Conserved motif and structure of VfNHX 
genes 

Conserved motifs were visualized in 
VfNHX proteins using Multiple Em for Motif  
Elicitation (http://memesuite.org). CDS and 
genomic sequences of VfNHX genes were 
extracted from Pytozome and subjected to 
Gene Structure Display Server 2.0 
(http://gsds.gao-lab.org/) for visualizing 
the gene structure. 
Mapping, duplication and synteny 
analyses of VfNHX genes  

The data, like chromosome number, 
position of VfNHX genes and chromosome 
length, were inserted in PhenoGram Plot 
for mapping VfNHX genes on 
chromosomes 
(http://visualization.ritchielab.psu.edu/p
henogram s/plot). The values of non-
synonymous (Ka) and synonymous (Ks) 
substitutions, of all duplicated gene pairs, 
were obtained from TBTool (Chen et al., 
2018). For synteny analysis, Fasta and 
GFF3 files of V. faba, A. thaliana, M. 
truncatula, G. max and S. lycopersicum 
plants were downloaded from Phytozome 
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v.13 databases and analyzed through the 
step MCScanX function in the TBtools 
program (Wang et al., 2012). Results were 
visualized via the Dual Synteny Plot for the 
MCScanX function in TBtools software 
(Chen et al., 2020). 
Promoter Region Analysis 

A sequence of 1500bp upstream was 
taken from the Phytozome of each gene. 
PlantCARE 
(https://bioinformatics.psb.ugent.be/we
btools/plantcare/html/) was used for 
exploring cis-regulatory elements in 
VfNHX genes (Lescot et al., 2002). 
Results 
Genome-wide identification of NHX 
genes in fava bean  
 and their physicochemical 
characterization 

Seven full-length genes were left after 
removal of truncated sequences/genes and 
were designated as VfNHX1-VfNHX7. A 
highly conserved Na⁺/H⁺ exchanger 
domain was found in all VfNHX proteins 
(Figure 1). VfNHX7 was recorded as the 
largest gene with 3468 bp CDS, 1145 amino 
acids protein length (PL) and 128.206 kDa 
protein molecular weight (PMW), while 
VfNHX3 was found as the smallest one 
with only 1590 bp CDS, 529 PI and 58.236 
kDa PMW (Table 1). Aliphatic index of all 
VfNHX ranged from 99 to 117, showing 
high thermal stability. Phylogenetic tree 
revealed vacoule as the major predicted site 
for NHX proteins (5), followed by 1 each in 
plasma membrane and endosomal region 
(Figure 1). Isoelectric points and GRAVY of 
VfNHX were found in the range of 5.2–8.9 
and 0.142–0.637, respectively (Table 1) 

Figure 1: (Annexure A)The yellow 
rectangular boxes represent the Na+/H+ 
exchanger domain. 

Table 1: (Annexure B) Physico-chemical 
characterization of VfNHX family 
Inter-specific phylogeny of NHX Proteins  

Forty-six NHX proteins across different 
species, including fava bean (Vicia faba), 
Arabidopsis thaliana, Glycine max, Medicago 
truncatula, Oryza sativa and Solanum 
lycopersicum, were clustered into 3 groups 
(NHX1, NHX2 and NHX3) based on the 
predicted location of NHX protein in 
organelles. Vacuole-localized proteins 
belong to the NHX1 group, endosomal-
localized proteins belong to the NHX2 
group, and Plasma membrane-localized 
proteins belong to the NHX3 group. The 
NHX1 group comprises 30 genes, while 
NHX2 and NHX3 consist of 9 genes and 7 
genes, respectively. Along with genes from 
other plants, 5, 1 and 1 genes from fava 
bean were recorded in NHX1, NHX2 and 
NHX3 groups, respectively (Figure 2). 

 
Figure 2: Comparative analysis of NHX 

proteins across different plant species. The 
phylogenetic tree was constructed through 
MEGA-12 using the Maximum Likelihood 
(ML) method. Different groups (NHX1, 2 
and 3) are highlighted with different 
colours. 
Chromosomal mapping, duplications and 
Ka/Ks ratio of NHX genes  

Seven genes were mapped on 6 
chromosomes. Two VfNHX genes 
(maximum) were placed on chromosome 
number 4, while only 1 VfNHX (minimum) 
was found on the rest of the chromosome. 
Segmental duplication was witnessed in all 
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the paralogs (2) (Figure 3). The detection of 
a less than 1 Ka/Ks ratio for both paralogs 
revealed its evolution under purifying 
selection (Table 2). 

 
Figure 3: Chromosomal locations and 

duplication patterns of VfNHX genes 
across the fava bean genome.  

The red circle represents the members 
of the NHX1 group, the green of the NHX2 
and the blue of the NHX3 group. The 
chromosome number is mentioned in each 
bar. Each line connects to two genes that 
represent paralogs. 

Table 2: The Ka/Ks ratio for paralog 
pairs 

Seq_1 Seq_2 Ka Ks Ka_Ks 

VfNHX1 VfNHX2 0.203768 1.415166 0.143989 

VfNHX3 VfNHX4 0.114173 0.410067 0.278426 

Intra-specific phylogenetic tree, Gene 
structures and motifs 

Based on phylogenetic analysis, 
VfNHX were clustered into 3 groups 
named as NHX1, NHX2 and NHX3. NHX1 
consist of VfNHX1-VfNHX5, NHX2 has 
VfNHX6 and NHX3 has VfNHX7. The 
phylogenetic tree of fava bean revealed 
that VfNHX1/VfNHX2 and 
VfNHX3/VfNHX4 are closely related to 
each other (Figure 4a). The VfNHX gene 
structures are arranged to match their 
evolutionary tree.  NHX1 group members 
detected with 13 to 14 exons, NHX2 and 
NHX3 have 20 and 22 exons, respectively. 
The number of introns in all 7 VfNHX 
genes ranged from 12 to 21 (Figure 4b). 

Conserved motifs in VfNHX proteins have 
been arranged in line with their 
evolutionary tree. The number of amino 
acids in motifs of VfNHX proteins ranged 
from 6–50. Motif 1, 2, 3, 4, 7, and 9 were 
marked as the longest ones with 50 amino 
acids, while the minimum amino acids was 
reported in motif 12. NHX1 group detected 
with a range of 10–11 motifs, and 5 motifs 
were detected in each member of NHX2 
(motif1, 3, 11, 13 and 15) and NHX3 
(motif11, 12, 13, 14, and 15) groups (Figure 
4c). Highly conserved amiloride binding 
site [FFIYLLPPI] was found in all VfNHX 
proteins except VfNHX7 (Figure 4d).  

Figure 4: (Annexure C) (a) Intra-
specific phylogenetic analyses, (b) Gene 
structure analysis, (c) conserved motifs, (d) 
Amiloride binding site [FFIYLLPPI]. 
Synteny analysis  

In synteny between V. faba and A. 
thaliana, VfNHX1, VfNHX5, and VfNHX7 
revealed collinear regions at chromosomes 
2, 5, and 6 in V. faba and chromosomes 1, 
2, 3 and 5 in A. thaliana (Figure 5a). 
Similarly, VfNHX1, VfNHX2, VfNHX5, 
VfNHX6 and VfNHX7 exhibited collinear 
regions on chromosomes 1, 2, 4, 5 and 6 in 
V. fava and on chromosome 3, 7, 8, 9, 10, 
15, 17, 19 and 20 in the genome of G. max. 
VfNHX1 revealed 4 copies on 
chromosomes 3, 10, 19, and 20 in G. max 
(Figure 5b). Likewise, VfNHX1, VfNHX2, 
VfNHX5 and VfNHX6 showed collinear 
regions at chromosomes 2, 4, 5 and 6 in fava 
bean and chromosome 1, 2, 3, 4 and 7 in M. 
truncatula. Two copies of VfNHX1 were 
found in M. truncatula, one on 
chromosome 1 and the other on 
chromosome 7 (Figure 5c). The synteny 
between fava bean and S. lycopersicum 
presented that VfNHX1, VfNHX2, VfNHX5 
and VfNHX7 have collinear regions on 
chromosomes 2, 4, 5, and 6 in fava bean and 
on chromosomes 1 and 10 in the genome of 
S. lycopersicum (Figure 5d). 
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Figure 5: (Annexure E) Collinearity 
analysis of fava bean with (A) A. thaliana, 
(B) G. max, (C) M. truncatula and (D) S. 
lycopersicum. 

In synteny, the upper (orange) and 
lower (green) boxes/lines represent the 
chromosome number of both species. Red 
lines connect NHX genes in both species. 
Promoter Analysis 

Promoter sequences of VfNHX genes 
were examined for cis-regulatory elements 
using PlantCARE software. One hundred 
thirty-four (134) cis-acting regulatory 
elements were explored in the 1500bp 
upstream region of 7 VfNHX genes (Figure 
6). Cis-regulatory elements were 
dominated by (a) light-responsive 
elements (67), followed by (b) hormone-
responsive elements (44), (c) 
environmental stress (15), and (d) 
developmental elements (5). The light-
responsive cis-elements include G-box, 
Box 4, GT1-motif, TCCC-motif, and TCT-
motif. The ABRE (ABA response elements) 
constituted a major part of hormone-
responsive elements present in VfNHX1, 
VfNHX2, VfNHX3 and VfNHX5. Similarly, 
ARE and LTR were detected as the 
prominent environmental stress-related 
elements, while GCN4_motif element was 
witnessed as the main developmental-
related element. Various cis-acting 
elements in the promoter region of each 
fava bean gene (VfNHX) have been shown 
in 6e.  Salt-associated cis-acting elements, 
including GT1-motif, TGACG-motif, 
ABRE, G-box, MBS, and TGA, were 
detected in VfNHX promoters. 

Figure (Annexure F) 
Figure 6: (Annexure G) Cis-regulatory 

elements in the 1500 bp upstream 
promoter region of VfNHX genes. 
Predicted cis-acting elements responsive to 
(a) Light, (b) Hormone, (c) Environmental 
stresses, and (d) Development, while 
various colored boxes in (e) represent 

different types of cis-acting elements in the 
promoter of each VfNHX gene. 
Discussions 

The identification of 7 VfNHX genes 
and detection of highly conserved Na+/H+ 
exchanger domain, in the present study, is 
in line with previous studies of S. bicolor 
(Kumari et al., 2018).  

Similarly, greater than 0 GRAVY, as 
recorded for all VfNHX, exhibited a 
hydrophobic nature of these proteins. 
These results strengthened earlier reports 
of Bhattacharya et al (2018). A higher range 
of aliphatic index (99 –117) revealed that a 
large portion of VfNHX proteins is covered 
by hydrophobic side chains, contributing 
to their stability to heat stress.  The range 
of exons (13–22) in VfNHX genes was 
similar to those reported in SlNHX genes 
(Cavusoglu et al., 2023) and reported by 
Shen et al (2023) in CmoNHX.  

The number of motifs in VfNHX 
proteins ranged from 5 to 11. The presence 
of a highly conserved amiloride binding 
site [FFIYLLPPI] in 6 members of the 
VfNHX family (except VfNHX7) is a 
characteristic feature of membrane-bound 
NHX transporter in plants (Wu et al., 2011). 
The amiloride impairs the function of the 
Na+/H+ antiporter, resulting in the 
accumulation of Na+ in the cytoplasm. This 
condition is beneficial only when there is a 
scarcity of sodium in the soil. The VfNHX7 
lacking amiloride binding reduces the 
cytotoxicity by sequestering Na+ into 
vacuoles.   Such similarity in motif 
configuration points toward a resemblance 
in the functions of VfNHX proteins. 
Medicago truncatula and tomato have 
shown such similarity in motif 
configuration (Sandhu et al., 2018; 
Cavusoglu et al., 2023). 

The location of NHX genes inside plant 
cells helps plants withstand the 
detrimental effects of stress. The 
researchers can enhance the resilience of 
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crops against stress by relocating these 
genes. For example, in Arabidopsis thaliana, 
the NHX1 gene is found in the tonoplast. It 
helps move salt (Na+) ions into the vacuole 
for safe storage, which supports plant 
growth and helps the plant survive under 
stressful conditions like high salt levels. 
VfNHX1, 2, 3, 4 and 5 were predicted to 
localize in the vacuole. (Apse et al., 1999; 
Zhang et al., 2012). In fava bean, VfNHX7 
was found in the plasma membrane, which 
revealed its possible involvement in 
maintaining pH and salt levels at the cell 
surface. They likely help swap sodium and 
hydrogen ions, which can affect important 
cell functions like controlling cell size, 
keeping pH balanced, and sending signals 
inside the cell (Wang et al., 2015). 

The phylogeny of VfNHX proteins 
revealed a closest evolutionary 
relationship with M. truncatula, followed 
by G. max, sharing a common ancestry 
with fava bean. Closest evolutionary 
relationship exhibited on account of higher 
sequential homology in protein sequences 
of both the crops.  

Segmental duplication was witnessed 
in VfNHX1/VfNHX2 and 
VfNHX3/VfNHX4 paralogs, which 
contributed significantly (28.5%) to the 
expansion of the VfNHX gene family. The 
ratio of synonymous and non-
synonymous substitution (Ka/Ks) reveals 
the force causing gene modification during 
the course of evolution.  Less than 1, equal 
to 1 and greater than 1Ka/Ks values 
represent purifying, neutral and positive 
selections, respectively (Wang et al., 2011).  
Less than 1 Ka/Ks of VfNHX paralogs  
(Ka/Ks < 1) exhibits purifying selection as 
an evolutionary force for gene 
modification. 

Collinearity analysis compared NHX 
genes in fava bean with those in 
Arabidopsis, Medicago truncatula, soybean, 

and tomato. It showed that some gene 
regions are conserved. The strongest 
match was detected between fava bean and 
soybean, followed by M. truncatula, 
Arabidopsis and tomato. The collinear 
chromosomal segments are believed to 
have the highest degree of conserved gene 
order and orientation pointing towards 
their common ancestral chromosome. The 
genes in collinear regions are less likely to 
have undergone structural rearrangements 
or losses, indicating their functional 
conservation. The strongest match 
between fava bean and soybean predicts 
the most likely ancestral relationship (true 
orthologs) and conserved functional 
collinearity in their genomes. These results 
are in line with earlier results witnessed in 
chickpea (Parveen et al., 2023). 

Cis elements act as main players in 
regulating transcription, controlling 
response to growth hormones and stresses 
(Ding et al., 2018). Different cis-acting 
elements adopt different modes for 
turning genes on or off in plants. Notably, 
the ABRE element interacts with plant 
hormone ABA (abscisic acid) (Wang and 
Huang, 2019). Similarly, various elements, 
including G-box, AT-rich, GT1-motif, and 
I-box, are stimulated by light (Gilmartin et 
al., 1992). Büyük et al (2016) have reported 
the role of GT1 and TGACG motifs in 
coping with salt stress. The involvement of 
ABRE, G-box, MBS, and TGA-elements 
was also highlighted during salt stress. 
These elements play a role in helping 
plants respond and adapt to salty 
conditions (Saeediazar et al., 2014). ABRE, 
TGACG-motif, and TGA-element are 
linked to hormone responses, while GT1-
motif and G-box respond to light, and MBS 
is related to environmental stress. The 
detection of these elements in the promoter 
region of VfNHX genes strengthened 
earlier reports of Parveen et al (2023) and 
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Cavusoglu et al (2023) in chickpea and 
tomato, respectively. We predict 
that VfNHX1 and VfNHX5, due to their 
promoter elements and vacuolar 
localization, are the primary candidates for 
mediating salt tolerance in fava bean. 
Conclusions 

This study was designed to reveal the 
VfNHX that highly responds to salt stress. 
The physico-chemical parameters were 
similar to those reported for the NHX gene 
family in other plants. Amiloride motifs 
were conserved in all VfNHX genes except 
VfNHX7. Segmental duplications 
contributed 28.5% to the VfNHX gene 
family expansion. Paralogs were under 
purifying selection. Promoter region of 
VfNHX genes enriched with cis-acting 
elements including GT1-motif, TGACG-
motif, ABRE, G-box, MBS, and TGA-
element. The putative salt-responsive 
genes, as explored in the current study 
based on their promoter analysis, could be 
the potential elements for enhancing the 
tolerance of fava bean against salt stress. 
After functional validation. In fact, these 
findings identify prime candidate genes 
(*VfNHX1-6*) for further functional 
characterization via overexpression to 
confirm their role in salt tolerance." 
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Annexure E 
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