

International

Journal of Agriculture Innovations and Cutting-Edge Research

Healing with Nature: Ethnobotanical Documentation of Medicinal Flora in Fajigram, District Bajaur, Pakistan

Zubair Shah¹ (Corresponding Author), Aziz Ullah², Badshahe Rome³, Sheheryar Hafeez⁴, Tausif Ahmad⁵

- 1. Department of Botany, Hazara University Mansehra, KP, Pakistan, Email: zubairshah_bjr@yahoo.com
- 2. Research officer, Department: Agriculture Research Sub-Station Merged Area, District Bajaur, KP, Pakistan, Pakistan Email: azizullahkhan60@yahoo.com
- 3. Research officer, Sugar Crops Research Institute, Mardan, KP, Pakistan, Email: badshaherome92@gmail.com
- 4. Research officer, Agricultural Research Institute, D.I Khan, Pakistan, Email: sherekhan4444@gmail.com
- 5. Research officer, Directorate of Agriculture Research (MAs), ARI, Tarnab-Peshawer, KP, Pakistan, Email: tausif.ahmad376@gmail.com

Abstract

Fajigram, known for its rich vegetation, was surveyed to document traditional medicinal plant knowledge through systematic ethnobotanical fieldwork conducted from August 2022 to September 2023. Plant specimens were collected during their flowering and fruiting stages to ensure accurate identification and proper recording of their uses. A total of 81 plant species belonging to 37 families were collected for the curing of various diseases. The leading family was Asteraceae, comprising 11 (13.58%) species, while the whole plant was the most frequently utilized, reported in 25 species (30.86%), followed by roots, seeds, leaves and other parts in varying proportions. Ethnobotanical data were obtained through questionnaires and semi-structured interviews with approximately three hundred indigenous inhabitants from different villages within the study area. The sample included an equal representation of males and females with ages ranging from 33 to 99 years. The recorded information includes local name, botanical name, family name, part used and specific medicinal applications of each species. Although no extensive research was conducted before this to investigate the medicinal uses of these plants in the study area and the findings not only preserve valuable traditional knowledge that is at risk of being lost due to socio-cultural changes but also provide a rich foundation for future pharmacological investigations and conservation strategies.

Keywords: Ethnobotanical fieldwork, Asteraceae, traditional knowledge, sociocultural changes, pharmacological investigations, conservation strategies.

DOI:	https://zenodo.org/records/17288865					
Journal Link:	https://jai.bwo-researches.com/index.php/jwr/index					
Paper Link:	https://jai.bwo-researches.com/index.php/jwr/article/view/165					
Publication Proc	Received: 27 Jal 2025/ Revised: 26 Sep 2025/ Accepted: 28 Sep 2025/ Published: 10 Oct 2025					
ISSN:	Online [3007-0929], Print [3007-0910]					
Copyright:	© 2025 by the first author. This article is an open-access article distributed under the terms and conditions of the					
	Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).					
Indexing:	Academia edu Denocia de Copernicus International					
Publisher: BWO Research International (15162394 Canada Inc.) https://www.bwo-researches.com						

Introduction

Many human illnesses are treated by different plant species because medicinal plants are rich sources of bioactive chemicals. The broad definition ethnobotany is the study of the interaction between plants and people (McClatchey et al., 2009). It is an interdisciplinary discipline that is regarded as a subfield of ethnobiology. Human communities use plants for a range of things, such as food, shelter and clothing, cosmetics, dyes and textiles, as well as construction materials, tools, as well as for religious ritual, decorations and health treatment (Pandey and Tripathi, 2017). Increase in population and also the use of unrefined resources of plants bv different Himalava's pharmaceutical companies, the habitats of the medicinal species have been limited over the last decades (Tandon, 1996). The study of ethnobotany focuses on how plants have been or are now used, maintained in human communities.

Today, ethenobotanical examinations include practical initiatives that could reduce poverty levels of local people and help them make better decisions about their upcoming courses of action. These inventive methods raised the standard of compensating cultural science while taking into account groups and environmental issues (Ahmad et al, 2003). This contemporary method is based on an interdisciplinary team typically made up of a physician, ethnobotanists and an ecologist. Some of these team members are distant area coworkers who have organized the expedition's specifics as well as the legal contracts for the village's or communities' reciprocal activities (Din, 2006). Mainly, human depends on the raw materials of plants to meet the medical needs for maintaining health and also to cure diseases (Jack DB, 1997). According to the literature, more than 12,000 plant species with therapeutic properties are in use across the globe. In poor countries, it has been estimated that between 75 and 90 percent of the population relies only on plants for their traditional usage. Plant-based medications are predicted to be worth \$43 billion worldwide, even in developed countries like the USA (Balick and Cox, 2020).

Medicinal plants have been used from past time for the curing of various disorders. Mostly the people deal with the trade of valuable medicinal plants all over the world for the general use of the inhabitants (Elisabetsky, 1990; Shinwari & Khan, 2000). For the transformation of information from one generation another, most of the people of these villages use native plant species as significant medicines from past times. Generally, the area is far-off from cities and commonly lacks suitable health services. Therefore, this study was significantly conducted to document and investigate the ethnomedicinal flora used by the indigenous communities of Fajigram, a previously unexplored area in District Bajaur.

Materials and Methods

The study was conducted to obtain medicinal information from the selected area; different visits and various trips of Fajigram, Tehsil Salarzai, Bajaur District were managed from August 2022 to September 2023. Plant specimens were collected in the flowering and fruiting seasons. The information was obtained through questionnaires, and about three indigenous hundred people interviewed from separate villages of the study region. Males and females were interviewed in equal numbers, and most of their ages range from 33 to 99 years. These plants were identified by online and available flora, and also with the help of Pakistan Flora by Tropics project (Ali and Nasir (Eds), 1990-1991; Nasir and Ali (Eds), 1970-1989). In this study, the standard procedure was followed (Forman and Bridson, 1989; Ali, 2010). The collected plants were pressed carefully, dried properly and pasted on a herbarium sheet. The information was analyzed, and native knowledge was recognized. The plant was secured and submitted to the Botany Department herbarium, Bacha Khan University, Charsadda.

The study area is Fajigram, located in Bajaur District at a distance of 8 kilometres from Khar (headquarters) to the east side. The area is rich with a lot of natural plant life. Geographically the studied region is located between 71°-11°, 71°-30° longitudes and 34°-30°, 34°-58° latitudes. The study area lies 1126 meters by altitudes above sea level (Shah et al., 2025). The research area has a severe and changeable climate. The season of winter begins in November and continues to March. Winter is harshly cold, and sometimes the temperature falls below the freezing point. February, December and January are the year's coldest months. The summer season starts from May and ends in October. June, August and July are the year's hottest months (Aziz et al., 2018). Totally, people of the region are Muslim and speak the Pashto language.

The study area consisted of sixteen villages, namely Maraday, Sero, Derai, Ghwanda Gata, Chowatra, Banda, Kalgo, Shagai Sar, Kharky, Serai, Umarai Ghundy, Gatkay, Balgholy Derai, Nemakai, Melkana and Dapharo. *Triticum aestivum* and *Zea mays* are the significant crops that grow in the area.

Map of Bajaur Showing the Study Area (Annexure A)

Results and Discussion

Identified plants

A total of 81 plant species belonging to 37 families from Fajigram, Tehsil Salarzai,

Bajaur District, Khyber Pakhtunkhwa, Pakistan were collected for the treatment of various disorders (Table No. 1). Alphabetically, the plants are arranged with their local name, botanical name, family name, used part and medicinal uses. The dominant family was Asteraceae, consisting of 11 plant species, followed by Solanaceae and Lamiaceae, having 7 plant species each, Amaranthaceae having 5 species, Brassicaceae having 4 plant species, Roseaceae, Fabiaceae, Papaveraceae, and Polygonaceae, having 3 plant species each, Cannabaceae, Ruteaceae, Myrteaceae, Cuscutaceae, Euphorbiaceae, Plantignaceae, Poaceae having 2 plant species each, while the rest of the families have fewer numbers (Fig. No:1).

Fig. No: 1. Families' graph of the study area (Annexure B)

Plant part used for ethnobotanical purposes.

Based on parts uses, the whole plant was used for 25 medicinal species (30.86%), followed by leaves of 15 plant (18.51%), 6 plant species for fruits (7.40%), 3 plant species for bark and Seed (3.70%), Root and 2 plant species (2.40%), Stem, Gum of Flower, Latex and Gloves are used of one species each (1.23%). Many plants were also collected which is used for two parts that is Leaves, Stem having 8 medicinal plant species (9.87%), followed by Fruit, Leaves of 4 species (4.93%), Seed, Leaves of 3 plants (3.70%), Fruit, latex, Root, Leaves, Seed and Capsule of 1 species each (1.23%). Just 3 medicinal plants were also collected, which are used for three parts, such as: Root, Leaves, Fruit of 2 species (2.46%) and Flower, Leaves, Seed for 1 species (1.23%), as in Fig. No: 2.

Fig. No. 2: Plants Part uses in the study area. (Annexure C)

The local inhabitants of the studied area mostly depend on the indigenous plants

due to a lack of basic health facilities and always use various medicinal plants for the treatment of different diseases of humans and animals, especially buffaloes, cows, goats, sheep's and donkeys. During my research work, the knowledge obtained about the uses of these plants for the purposes of different medical problems was taught by the Herbalist and local people of the area. It was also observed that the people of old age are more knowledgeable about the use of plants as basic health facilities in contrast with the young generation (Qureshi et al., 2010, 2011, 2009; Sardar and Khan, 2009; Qureshi and Bhatti, 2009; Ahmad et al., 2010).

Table No 1. Total information of medicinal plants with family name, botanical name, part used, local name and medicinal uses is stated below. (Annexure D)

The area is deficient in sufficient veterinary services, so conventionally various plants are used as veterinary medicines, such as fresh roots of Heracleum candicans are given to goat, cows, and sheep as a sexual tonic and to improve the speed of fertility. The leaves of Eucalyptus camaldulensis are given to cattle against digestive disorders and as an appetizer. Triticum aestivum is given to animals to improve the rate of fertility. denticulate bark is given to all types of cattle to treat internal body infection and cough. Leaves of Chenopodium album Linn are used for stomachic for animals (Aziz et al., 2018; Shah et al., 2025). Some species like Citrus limon, Equisetum arvense and Malva neglecta are used for removing kidney stones. Various plant species such as Vitex negundo, Mentha longifolia and Melia azedarach are used for digestive problems. One species, Ficus carica, is a remedy for removing spines. Different plants are used stomach disorders like communis, Teucrium Stocksianum, Dysphania ambrosoides, Ajuga bracteosa, Cotoneaster

microphyllus, Rumex hastatus and Melia azedarach. The species like Verbena officinalis and Taraxacum officinale are used for fever. Eucalyptus camaldulensis and Martricaria discoidea are used for the curing of itching. Verbena officinalis, Calotropis procera and Lepedium didymium are used for the curing of pimples. These weed species were also collected from Arang, Bajaur (Shah et al., 2025). The plant species such as Allium sativum, is used to lower blood pressure, Calotropis procera for scabies, and Equisetum arvense for the treatment of urine problems. The result is similar to a researcher who also collected these plants from the District Dir (Khan and Khatoon, 2004).

Pakistan has a lot of medicinal plants and also has a rich record for the folk use plants. Different researchers of the collected various medicinal plant species from different parts of Pakistan for different diseases. 67 medicinal plants were collected from District Khyber by Afridi (1986). Different local traditional and medicinal uses of various plants of the District Mansehra were reported by Haq and Hussain (1993). The various medicinal plant species of Rawalpindi were also investigated (Durrani and Hussain, 2003; Arshad and Akram, 1999). District Chitral (Ali and Qaiser, 2009), District Kurram (Gillani et al., 2003), District Attock (Noor and Kalsoom, 2011), Margalla (Shinwari and Khan, 1998), Kotli (Ajaib et al., 2010), and Abbotabad (Abbasi et al., 2010) have also been explored. The ethnobotany of the Kohistan Valley District, Dir, was studied (Ali et al., 2010; Gul et al., 1999).

The study area is under a strong biotic pressure like erosion, fuel wood collection, deforestation and overgrazing. The loss of valuable plants in the area is increased by the degradation of the habitat. Due to inappropriate management by local

communities of medicinal plant of medicinal plants reduce the possibility of survival of important medicinal plants is reduced; therefore, the area requires proper conservation and management of these important plants, especially the medicinal plants.

Conclusion

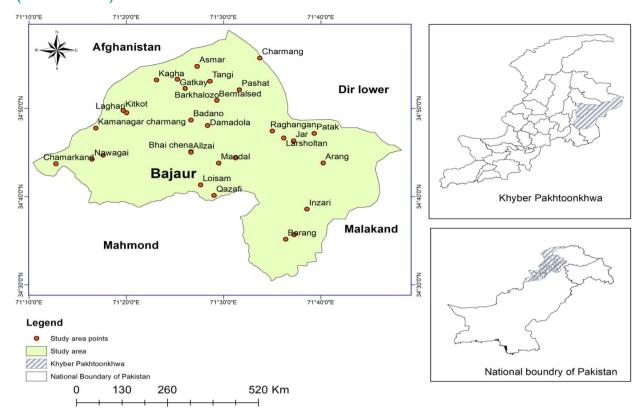
From Fajigram, Tehsil Salarzai, Bajaur District, Khyber Pakhtunkhwa, Pakistan, 81 plant species from 37 families were identified. These plants have been used traditionally to treat a variety of human and animal illnesses. With 11 species, the Asteraceae family was the most prevalent, followed by the Lamiaceae and Solanaceae families, each with seven species. The most often used plant components were the leaves (18.51%) and the entire plant (30.86%), while fruits, bark, roots, seeds, and latex were used less frequently. Several species have been identified for several plant sections, demonstrating their wide range of therapeutic uses.

My research work revealed that the research area has a lot of medicinal plants, but the knowledge about medicinal plants is limited to elderly persons and traditional healers of the studied area. The local people, who are unaware of the significance of these plant species, due to which many species like Heracleum Ajuga candicans, bracteosa, Ricinus Mentha longifolia, communis, **Aptenia** Plantago lanceolata, Papaver cordifolia, Cannabis somniferum, sativa, Pinus roxburgii, Plantago major, Melia azedarach and Acacia modesta are being endangered. For these purposes, to avoid further loss of rare, endangered and endemic species, their conservation is necessary. So, it is necessary to restore and document the remains of old medicinal knowledge and to protect this knowledge for future generations.

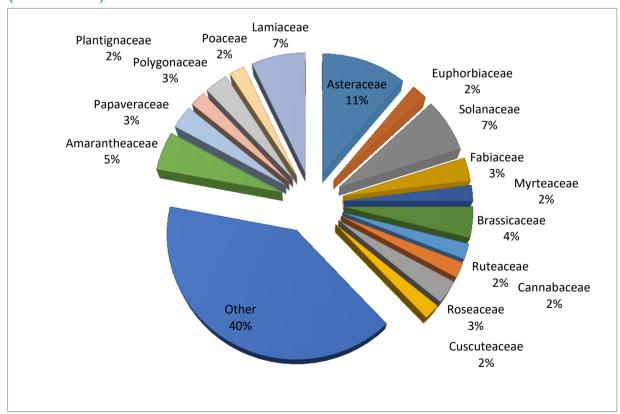
Recommendations:

- 1. Records of traditional ethnomedicinal knowledge are required systematically to prevent its loss and ensure its transmission to future generations.
- 2. Awareness should be created about the significance of medicinal weeds among the local inhabitants to decrease the cutting.
- 3. Broad research work is required to find out the pharmacognostic, molecular and cytotoxic studies in this area.

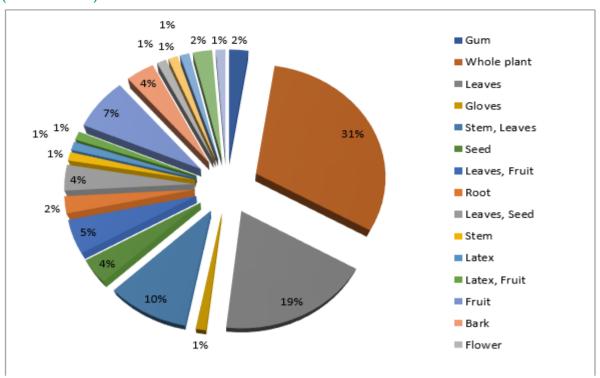
References


- Abbasi, A. M., Khan, M. A., Ahmad, M., Qureshi, R., Arshad, M., Jahan, S., Zafar, M., & Sultana, S. (2010). Ethnobotanical study of wound healing herbs among the tribal communities in the Northern Himalaya Ranges, District Abbottabad, Pakistan. *Pakistan Journal of Botany*, 42(6), 3747–3753.
- Afridi, S. K. (1986). *Medicinal plants of Khyber Agency* (Unpublished M.Sc. thesis). Department of Botany, University of Peshawar.
 - Ahmad, I., Ahmad, M. S. A., Hussain, M., Ashraf, M., Ashraf, M. Y., & Hameed, M. (2010). Spatiotemporal aspects of plant community structure in open scrub rangelands of submountainous Himalayan plateaus. *Pakistan Journal of Botany*, 42(5), 3431–3440.
- Ahmad, M. (2003). Ethnobotanical and taxonomic studies of economically important plants of Tehsil Attock (Unpublished M.Phil. thesis). Department of Biological Sciences, Quaid-i-Azam University, Islamabad.
- Ajaib, M., Khan, Z. D., Khan, N., & Wahab, M. (2010). Ethnobotanical studies on useful shrubs of District Kotli, Azad Jammu & Kashmir, Pakistan. *Pakistan Journal of Botany*, 42(3), 1407–1415.
- Ali, H., & Qaiser, M. (2009). The ethnobotany of Chitral valley, Pakistan, with particular reference to medicinal plants. *Pakistan Journal of Botany*, 41(4), 2009–2041.
- Ali, S. I., & Nasir, Y. J. (Eds.). (1990–1991). Flora of Pakistan (Fascicles 191–192). Islamabad & Karachi.
- Ali, S. I. (2010). Medicinal plants collection and taxonomic identification. *Pakistan Journal of Botany*, 43, 11–13.
- Arshad, M., & Akram, S. (1999). Medicinal plants of the University of Arid Agriculture, Rawalpindi. *Hamdard Medicus*, 40, 46–50.

- Aziz, A. M., Khan, A. H., Adnan, M., & Ullah, H. (2018). Traditional uses of medicinal plants for veterinary practices by Indigenous communities in Bajaur Agency, Pakistan. *Journal of Ethnobiology and Ethnomedicine*, 14, 11. https://doi.org/10.1186/s13002-017-0204-5
- Bridson, D., & Forman, L. (1989). *The herbarium handbook*. Royal Botanic Gardens, Kew.
- Durrani, M. J., & Hussain, F. (2003). Ethnoecological profile of plants of Harboi rangeland, Kalat, Pakistan. *International Journal of Biology and Biotechnology*, 2, 15–22.
- Elisabetsky, E. (1990). Plants used as analgesics by Amazonian caboclos. *International Journal of Crude Drug Research*, 28, 309–320.
- Gilani, S. S., Abbas, S. Q., Shinwari, Z. K., Hussain, F., & Nargis, K. (2003). Ethnobotanical studies of the Kurram Agency, Pakistan, through rural community participation. *Pakistan Journal of Biological Sciences*, *6*, 1368–1375.
- Haq, I. U., & Hussain, M. (1993). Medicinal plants of Mansehra District. *Hamdard Medicus*, 34, 63–99.
- Jack, D. B. (1997). One hundred years of aspirin. *The Lancet*, 350(9075), 437–439. https://doi.org/10.1016/S0140-6736(97)07087-6
- Jan, G., Khan, M. A., & Jan, F. (2008). Medicinal value of Asteraceae of Dir Kohistan Valley, NWFP, Pakistan. Ethnobotanical Leaflets, 12, 620–637.
- Khan, S. W., & Khatoon, S. (2004). Ethnobotanical studies in Haramosh and Bugrote Valleys (Gilgit). *International Journal of Biology and Biotechnology*, 1(4), 537–544.
- Nasir, E., & Ali, S. I. (Eds.). (1970–1989). Flora of Pakistan (Fascicles 1–190). Islamabad & Karachi.
- Noor, M. J., & Kalsoom, U. (2011). Ethnobotanical studies of selected plant species of Ratwal Village, District Attock, Pakistan. *Pakistan Journal of Botany*, 43(2), 781–786.
- Qureshi, R., & Bhatti, G. R. (2009). Folklore uses of the Amaranthaceae family from the Nara desert, Pakistan. *Pakistan Journal of Botany*, 41(4), 1565–1572.
- Qureshi, R., Maqsood, M., Arshad, M., & Chaudhry, A. K. (2011). Ethnomedicinal uses of plants by the people of the Kadhi Areas of Khushab, Punjab, Pakistan. *Pakistan Journal of Botany*, 43(1), 121–133.
- Qureshi, R., Waheed, A., Arshad, M., & Umbreen, T. (2009). Medico-ethnobotanical inventory of Tehsil Chakwal, Pakistan. *Pakistan Journal of Botany*, 41(2), 529–538.


- Qureshi, R., Bhatti, G. R., & Memon, R. A. (2010). Ethnomedicinal uses of herbs from Northern Nara Desert, Pakistan. *Pakistan Journal of Botany*, 42(2), 839–851.
- Sardar, A. A., & Khan, Z. D. (2009). Ethnomedicinal studies on plant resources of Tehsil Shakargarh, District Narowal, Pakistan. *Pakistan Journal of Botany*, 41(1), 11–18.
- Shah, Z., Ullah, A., Khan, B., Din, M. U., & Rome, B. (2025). Documentation of traditional practices for mitigating the effects of *Parthenium* (*Parthenium hysterophorus* L.) on agriculture and health in District Bajaur, KP, Pakistan. *Global Research Journal of Natural Science and Technology*, 3(3), 322-344. https://doi.org/10.53762/grjnst.03.03.16
- Shah, Z., Ullah, A., Khan, B., Din, M. U., & Rome, B. (2025). Ethnobotanical insights to weeds: Unveiling traditional knowledge and uses in Arang Valley, District Bajaur. Annual Methodological Archive Research Review, 3(8), 1112–1122. https://doi.org/10.63075/tgnfvd16
- Shah, Z., Ullah, A., Tahir, M., Ijaz, M., Hussain, M., Basir, A., & Ahmad, T. (2025).

 Ethnoveterinary Practices and Uses of Medicinal Plants in Ghar Shamozai, District Bajaur: Preserving Traditional Knowledge for Sustainable Livestock Healthcare. *Planta Animalia*, 4(4), 333-346. https://doi.org/10.71454/PA.004.04.0190
- Shinwari, M. I., & Khan, M. A. (1998). *Ethnobotany of Margalla Hills National Park, Islamabad* (Unpublished report). Department of Biological Sciences, Quaid-i-Azam University.
- Shinwari, M. I., & Khan, M. A. (2000). Folk use of medicinal herbs of Margalla Hills National Park, Islamabad. *Journal of Ethnopharmacology*, 69, 45–56.
- Tandon, V. (1996). CAMP workshop Plants under threat: New list forged. *Medicinal Plants Conservation Newsletter*, 2, 12–13.


(Annexure A)

(Annexure B)

(Annexure C)

(Annexure D)

S.	Botanical Name	Family	Local Name	Part	Habit	Medicinal Uses
No				Used		
1.	Acacia modesta (Wall) P. THurter.	Fabaceae	Palosa	Gum	Tree	Backache and tonic.
2.	Ajuga bracteosa Wall. ex Benth.	Lamiaceae	Goote	Whole plant	Herb	Sore throat, jaundice, hepatitis, hypertension, stomachache and blood purification.
3.	Ajuga integrifolia Buch. Ham.	Lamiaceae	Gute	Leaves	Herb	Purification of blood and problems of the skin.
4.	Allium sativum L.	Amaryllidaceae	Oga	Gloves	Herb	Cardiac problems and blood pressure.
5.	Alternanthea pungens Kunth.	Amaranthaceae	Insat	Whole plant	Herb	Skin problems in animals.
6.	Aptenia cordifolia (Lf.) N.E.Br.	Aizoaceae	Warkharay	Whole plant	Herb	Belly pain.
7.	Artemisia absinthium L.	Asteraceae	Sparaboty	Whole plant	Herb	Worm killer.
8.	Artemisia maritina L.	Asteraceae	Tarkhaa	Leaves, Stem	Herb	Diabetes and vermifuge.
9.	Artemisia scoparia Waldst. & Kit.	Asteraceae	Spareboty	Leave	Herb	Blood, digestive and skin problems.
10.	Brassica compestris L.	Brassicaceae	Sharsham	Seed	Herb	Skin diseases, vermifuge, and reduce body heat.
11.	Calandula arvensis L.	Asteraceae	Ziargulay	Leaves, Fruits	Herb	Antispasmodic, stimulant and diaphoretic.
12.	Calotropis procera (Aiton) W. T. Aiton	Apocyanaceae	Spulmai	Leaves	Shrub	Kills Ticks (Kone), skin itches and scabies.

13.	Cannabis sativa L.	Canabagaaa			Herb	Pain finishing agent and
13.	Cannavis sativa L.	Canabaceae	Bhaang	Stem, Leaves	петв	narcotic.
14.	Carthamus oxycantha Co.Cr.	Asteraceae	Azghay	Seeds	Herb	Jaundice and infection of the skin.
15.	Celtis australis (L.) Wild.	Cannabaceae	Tagha	Leaves	Tree	Digestive disorders.
16.	Chenopodium album Linn.	Amrantheaceae	Sarmay	Whole plant	Herb	Stomachic.
17.	Chenopodium ambrosiodes L.	Amarantheaceae	Kharrboty	Whole plant	Herb	Malaria and vomiting.
18.	Chenopodium murale L.	Amarantheaceae	Sakhaboty	Whole plant	Herb	Abdominal pain and jaundice.
19.	Citrus limon (L) <u>Osbeck</u> .	Rutaceae	Nembo	Leaves, Fruits	Tree	Vomiting, kidney stone, abdominal pain, fever and digestion.
20.	Convolvulus arvensis L	Convolulaceae	Prewaty	Whole plant	Herb	Milk production.
21.	Conyza bonariensis (L.) Cronquist.	Asteraceae	Malochy	Whole plant	Herb	Dysentery and diarrhea.
22.	Conyza canadensis (L.) Cronquist	Asteraceae	Malochy	Whole plant	Herb	Dysentery and diarrhea.
23.	Coronopus didymus (L.) Smith.	Brasicaceae	Sakhaboty	Whole plant	Herb	Blood pressure.
24.	Cotoneaster mirophyllus L.	Roseaceae	Momanahra	Root	Tree	Stomach and hepatitis diseases.
25.	Cuscuta reflexa Roxb	Cuscutaceae	Manchy	Whole plant	Herb	Insects killing.
26.	Datura innoxia Mill.	Solanaceae	Batura	Leaves	Shrub	Headache, epilepsy and toothache.
27.	Datura belladonna L.	Solanaceae	Datura	Leaves, Seeds	Herb	Headache, toothache, swollen limbs, epilepsy, antipyretic and narcotic.
28.	Dodonaea viscosa Jacq.	Spindaceae	Ghwrasky	Leaves	Shrub	Fungal infections, hair tonic and antihelminthic.
29.	Dysphania ambrosoides L.	Amarantheaceae	Kharboty	Leaves	Herb	Swelling, inflammation and pain in the stomach.
30.	Equisetum arvence L.	Equiseteaceae	Bandaky	Stem	Herb	Removal of kidney and urinary bladder stones.
31.	Eucalyptus camaldulensis Schlecht.	Myrtaceae	Lachi	Leaves	Tree	Digestive disorder and itching.
32.	Euphorbia helioscopia L.	Euphorbiaceae	Mandahro	Latex	Herb	It causes swelling and is poisonous.
33.	Ficus carica L.	Moraceae	Enzer	Latex, Fruits	Tree	Spines and placenta removal for constipation.
34.	Fumaria indica (Hausskn.)	Papaveraceae	Shatara	Whole plant	Herb	Common fever and Hypertension.
35.	Fumaria parviflora Lam.	Papaveraceae	Shahtara	Leaves, Stem	Herb	Athlete's foot and reduce inner temperature.
36.	Heracleum candicans Wall. Ex DC.	Apiaceae	Sekhwara	Fresh	Herb	Increase fertility rate and sexual tonic.
37.	Launaea procumbens (Roxb.)	Cuscutaceae	Shudapai	Whole plant	Herb	Galactagogue and tonic.
38.	Lepedium didymium L.	Brassicaceae	Sakhaboty	Whole plant	Herb	Pimple and itching.

20		T.1.1				Constant cutting Edge Research 5(4)
39.	Lotus corniculatus L.	Fabiaceaae	Fatikhany	Stem, Leaves	Herb	Sexual tonic and infection of the urinary tract.
40.	Luffa aegyptiaca Mill.	Cucurbitaceae	Tory	Fruit	Herb	Kept body temperature cold.
41.	Malva neglecta Wall.	Malvaceae	Panderak	Whole plant	Herb	Kidney stones and flatulence.
42.	Martricaria discoidea DC.	Asteraceae	Babona	Whole plant	Herb	Ringworm and itching.
43.	Medicago lupulina L.	Fabiaceae	Spestary	Whole plant	Herb	Laxative.
44.	Melia azedrach L.	Meliaceae	Tora shandai	Bark	Tree	Digestive problems, stomach disorder and constipation.
45.	Mentha longifolia L.	Lamiaceae	Enaly	Leaves	Herb	Belly pain, digestive problems, dysentery and vomiting.
46.	Myrtus communis L.	Myrtaceae	Marhno	Leaves	Shrub	Stomach disorders.
47.	Olea ferrugina Royle.	Oleaceae	Khona	Leaves, Fruits	Tree	Throat infection, pain, itching, constipation and antiseptic.
48.	Oxalis corniculata L.	Oxilidaceae	Trewaky	Whole plant	Herb	Improvement of digestion
49.	Papaver somniferum L.	Papaveraceae	Koknar	Seed, Capsule	Herb	Headache, dysentery, tonic. Chest pain and narcotic.
50.	Parthenium hysterophorus L.	Asteraceae	Kharboty	Leaves, Stem	Herb	Carminative and laxative.
51.	Pinus roxburgii Sarg.	Pinaceae	Nakhtar	Gum	Tree	Diarrhea and sore throat.
52.	Plantago lanceolata L.	Plantaginaceae	Ghwajabai	Leaves	Herb	Constipation, dysentery and expectorant.
53.	Plantago major L.	Plantaginaceae	Ghwajabai	Leaves	Herb	Constipation, dysentery and expectorant.
54.	Polygonum glabrum L.	Polgonaceae	Surguly	Whole plant	Herb	Fish hunting.
55.	Prunus amygdalus Baill.	Roseaceaee	Badam	Fruit	Tree	Tonic and enhance memory.
56.	Ricinus communis L.	Euphorbiaceae	Randa	Seed, Leaves	Tree	Sterility causes death and wounds to heal.
57.	Rosa Moncheta Herrm.	Rosaceae	Zangali gulab	Flower	Shrub	Dysentery and also for fertility
58.	Rumex dentatus L.	Polgonaceae	Shalkhay	Young shoot, Leaves	Herb	Constipation.
59.	Rumex hastatus D. Don.	Polygonaceae	Taruky	Whole plant	Herb	Stomach toxicity.
60.	Salix denticulate Andrsson.	Salicaceae	Wala	Bark	Tree	Cough and infections of the internal body.
61.	Salvia moorcrofiana Wall ex Benth.	Lamiaceae	Khardug	Root, Leaves	Herb	Swelling and wounds healing.
62.	Silybum marianum L.	Asteraceae	Azghai	Leaves, seeds, flowers	Herb	Liver problems, Antipyretic and Jaundice.
63.	Sisymbrium irio L.	Brassicaceae	Gengerr	Seeds	Herb	Inflammation and cool internal temperature.
64.	Solanum dulcamara L.	Solanaceae	Kachmacho	Fruits	Shrub	Infection and problems of the liver.
65.	Solanum nigrum Auct.	Solanaceae	Kachmacho	Fruits	Herb	Liver problems and inflammation.

66.	Solanum surattense Burm. F.	Solanaceae	Ghana	Fruit, Roots, Leaves	Herb	Milk production, Fever, cough and pain.
67.	Solanum virginianum L.	Solanaceae	Maraghuny	Fruit, Roots, Leaves	Herb	Milk production, Fever, cough and pain.
68.	Sonchus asper L.	Asteraceae	Shodapay	Whole plant	Herb	Bronchitis, cough and asthma.
69.	Sorghum halepense Pers.	Poaceae	Dadam	Whole plants	Herb	Dangerous for cattle when young.
70.	Stellaria media L.	Caryophylaceae	Chaghanek	Leaves, Stem	Herb	Ringworm.
71.	Tamarix aphylla (L) Karst.	Tamaricaceae	Ghaz	Bark	Tree	Infection and burnt skin.
72.	Taraxacum officinale (L) Weber.	Lamaceae	Shodapai	Leave	Herb	Combat fever, cough and asthma.
73.	Teucrium stocksianum Bois.	Lamiaceae	Yakandaaz	Whole plant	Herb	Stomach problems, Fever and hepatitis.
74.	Triticum aestivum L.	Poaceae	Ghanum	Stem, Leaves	Herb	Enhance the rate of fertility
75.	<i>Urtica dioica</i> Linn.	Urticaceae	Sezonky	Whole plant	Herb	Jaundice and diuretic.
76.	Verbascum Thapsus L.	Scrophulariaceae	Khardugg	Leaves	Herb	External wound.
77.	Verbena officinalis L.	Verbenaceae	Shomaky	Leaves	Herb	Fever and spots.
78.	Vitex negundo L.	Lamiaceae	Marwandai	Leaves, Seed	Shrub	Digestion, belly pain and vomiting.
79.	Withania somnifera (L.) Dunal.	Solanaceae	Kotilal	Fruit	Herb	Produce fertility.
80.	Zanthoxylum armatum. DC.	Ruteaceae	Dambara	Fruits	Shrub	Chest infection and digestion.
81.	Zizyphus oxyphylla Edgew.	Rhamnaceae	Elani	Leaves, Fruit, Root	Tree	Antidiabetic, antibiotic and hepatitis.